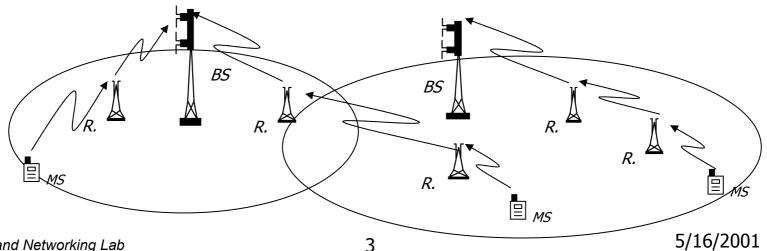
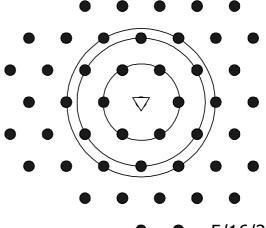
On the Capacity of Wireless Packet CDMA Multihop Networks

Ali N. Zadeh
Communications and Networking Lab
George Mason University
Joint Research Project with GWU

November 14, 2000



- A simple architecture
 - Structure, radio link model
- Link capacity in single user system
 - Diversity techniques, multi-element arrays, space-time coding
- Link capacity in multiple user system
 - Multiuser detection, smart antennas/interference cancellation
- Network capacity
 - Medium access techniques, Routing strategy
- Performance Analysis
 - Throughput, traffic rate, interference
- Conclusion


Benefits of Multihop Networking

- By shortening paths, transmitted power is highly reduced
- One other source for power reduction is that the propagation model approximately changes from $1/r^4$ to $1/r^2$ for short links
- Routers can be used to distribute the traffic uniformly
- Bursty traffic can be handled through a route without affecting the reception capability of the other parts of the network

- Users share three main domains to transfer data
 - Time
 - Frequency
 - Space
- Increasing the number of channels in the space:
 - By increasing the number of network cells
 - In very small cells, base stations and their connection to the wired backbone is quite costly

- Capacity of multihop network: the total rate by which information originated by all nodes reaches the final destinations
- How does different techniques affect the capacity?
- Reducing the power consumed in the network, does it necessarily result in higher capacity?
- What are the efficient routing algorithms?
- How to optimize system parameters?
- How to model this network?

- Time varying multipath channel
 - Angular spread: Signal reception from many different directions
 - Time spread: Signal propagation through different paths experiences different delays
 - Frequency spread: Change of scattering environment with time
- Radio channel model:
 - Fading
 - Shadowing
 - Path loss
- Existing power control techniques
 - Approximately mitigate the effect of shadowing and path loss
 - Received power modeled as a Rayleigh distribution

Link Capacity in Single-User System

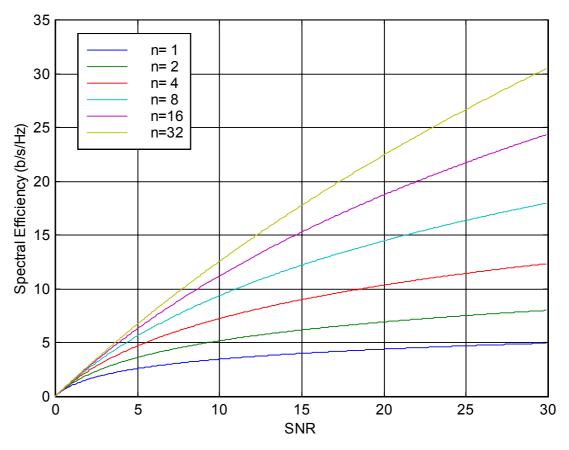
- Maximum spectral efficiency(bits/s/Hz) is obtained based on Shannon formula
 - Capacity is related to channel state information (CSI) available at transmitter and receiver
 - A better strategy can be devised to achieve higher throughput when there is more information available about the channel
- For a single transmit/single receive antenna, flat fading channel, and ideal CSI
 - The optimum power strategy is:
 - No transmission when the fading coefficient is below a threshold
 - Transmission with proportionally lower power as the coefficient increases over that threshold
 - When the signal is highly faded, no power is wasted by transmitting data

- Multipath fading:
 - Severely attenuates the transmitted signal
 - Provides several replicas of the signal at the receiver
- Main diversity domains:
 - Temporal diversity:
 - Error correcting codes in conjunction with time interleaving
 - Frequency diversity:
 - Equalizers in TDMA or RAKE receivers in CDMA
 - Space diversity:
 - Spatially separated or differently polarized antennas
 - Receiving several replicas of the same packet in different time slots and from different nodes
- Total diversity order: the product of all diversity orders in independent domains
- By increasing diversity order, distribution of fading tends to follow a Gaussian distribution which corresponds to higher capacity limit

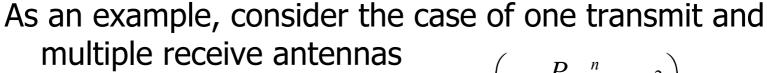
- High data rate transmission in bandwidth limited channel
 - Using highly spectral efficient code with very large constellation size
 - Increasing the number of channels
- Capacity versus outage:
 - When T<<T_{coh} channel capacity is viewed as a random variable since it depends on the instantaneous random channel parameters

T: transmission duration of a data block

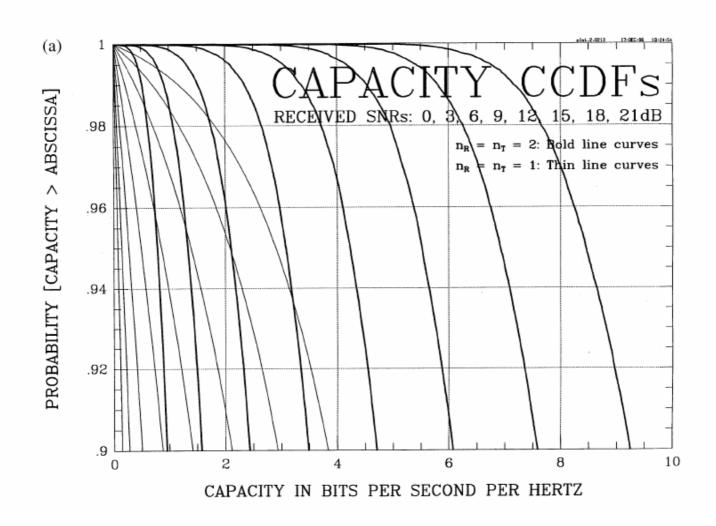
T_{coh}: channel coherence time


- A flat slowly fading channel with n_R receive, n_T transmit antennas
 - Channel can be described by an (n_R, n_T) matrix H which has the propagation information from each transmitter to each receiver
 - Shannon capacity as a random variable (perfect CSI at receiver)

$$C = \log_2 \left(\det \left[I_{n_R} + HH^H P_0 / n_T P_n \right] \right)$$


 P_0 : transmit signal power P_n : average power of AWGN

• This method can create up to $n=min(n_R, n_T)$ parallel channels



 $C = \log_2 \left(1 + \frac{P_0}{P_n} \sum_{i=0}^{n} |H_i|^2 \right)$

- Which can be achieved by a linear beam-former
- The increased capacity in this link is due to two effects.
 - By increasing the number of channels, mean capacity is increased almost linearly with the number of antenna elements
 - By providing temporal, transmit, and receive diversity channel reliability will be highly improved for higher data rates

MIMO Radio Channels (Cont'd)

- Uncorrelated diversity branches can be obtained
 - At mobile station: spacing the antenna elements about a half wavelength apart
 - For base stations: an antenna separation of about 20 wavelength is required to obtain a correlation of about 0.7, with this high value of correlation, a significant diversity improvement can be realized.
- Adding multiple antennas for small devices is expensive and sometimes not practical
- Routers which are normally mounted on bigger devices with better power supplies can afford good space time codes
- Connection of routers together and to the base stations using highly efficient codes is like connecting them by wire
- Outage capacity of 40 b/s/Hz has been reported
 - 95% availability
 - signal to noise ratio of 10 dB
 - eight elements at both transmitter and receiver

- In a conventional cellular network:
 - Increasing the power of all nodes does not affect the signal to interference ratio (for high SNR)
 - When all the information about other transmitting users is limited to the total received interference, power scaling does not affect the performance of the network
 - Link capacity is limited by increasing SNR
- Higher capacity limit is achieved:
 - Using information like spreading codes, direction of signal arrival of other transmitting users
 - This is at the expense of using more complex techniques for decoding

- When K users are transmitting to a receiver simultaneously, in a flat slowly fading environment, a channel can be described by K random variables v_i modeling the propagation from the ith user to the receiver
- For the case that the receiver has perfect CSI and the transmit power of each user is P, the maximum achievable capacity for all users can be obtained as

 $C = \log_2 \left(1 + \sum_{i=0}^K P_i \nu_i / P_n \right)$

For a large number of users

$$C = \log_2(1 + KP_{av}/P_n)$$

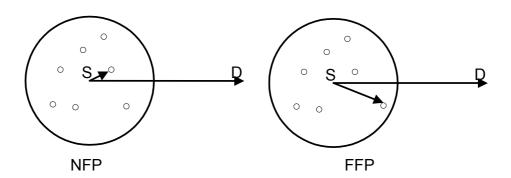
 This capacity can be achieved in CDMA systems where the deleterious effect of fading is mitigated by averaging inter-user effect

- By increasing the number of transmitted packets, the maximum information that each packet can bear is reduced
- One effective method to overcome this problem is to use methods like Hybrid ARQ
 - Packets are saved at the destination and more parity bits are requested by receiver until it can decode the data
 - By this method, multirate traffic is generated which adaptively changes as a function of channel state
- Multiuser detection
 - Reduces sensitivity of decoding to near far effect and power control
 - In the uplink results to lower bit error rate
 - In the downlink results to high power conservation

- Even with multiuser detection, link capacity will not linearly increase by the number of transmitted packets
- Specially for high signal to noise ratios, splitting power on different channels results in a better performance.
- Cell sectorization using directional antennas at base stations
 - Increase the system capacity in the uplink and downlink by a factor equal to the number of sectors
 - Due to the imperfection in practical antennas, the reliability of reception from terminals located in handoff regions is reduced
 - Due to wide angular spread of the signal at mobiles and routers, receive antennas can not distinguish between direction of signal arrivals from different transmitters
- An M element smart antennas, however, can null M-1 interferers independent of the multi-path environment

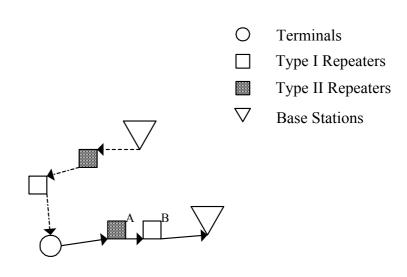
- By adding routers, as the maximum number of nodes communicating to any node is reduced, smart antennas can be more effective
- Another problem arises when space-time coding and smart antenna technique are used together
 - In each symbol period, the set of symbols transmitted on different branches of antenna construct the array weight vector and define the radiation pattern
 - The transmit antenna pattern steers in different directions from symbol to symbol creating interference for other part of the network
 - For reception, this pattern change results in receiving interference from other sources

- Space, time, and frequency are the three main domains that must be shared between different network nodes
- Time scheduling is referred to as medium access protocol
- Space sharing is done based on network topology and is usually covered under the topic of routing strategy
- Two main questions:
 - How to use the System State Information (SSI) to define the strategy
 - How to obtain this information

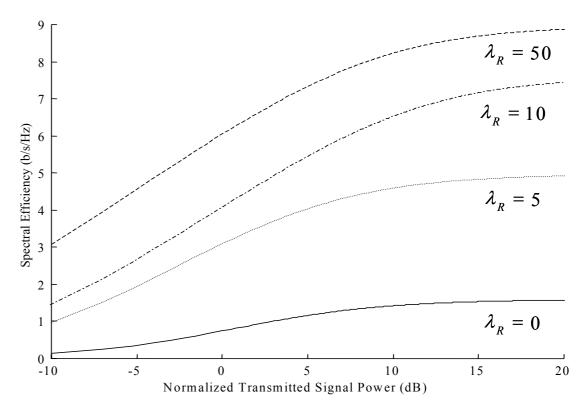


Medium Access Techniques

- The statistical properties of today's network traffic shows a long range dependency in time and self similarity characteristics
- Just like the single channel case, feeding back system state information (SSI) to the transmitting nodes has a direct effect on network capacity
- Medium access control (MAC) is to guarantee a traffic with
 - Low variance
 - Average close to capacity limit
 - Reduce the probability of outage
 - Increase system throughput



- Transmission Strategies
 - What should be the transmission range?
 - To whom should the transmission be addressed?
- Two methods have been investigated in the literature
 - NFP (Nearest with forward progress)
 - FFP (Farthest with forward progress)


Impact of Routing on Capacity (Cont'd)

- In the cellular structure the routing strategy is more complex
 - In uplink, each base station can be the final destination
 - In downlink, several base stations can send the data to one terminal
 - Loop free
 - Unilateral links

A Typical System Performance

 System capacity for different routers density for network with multiuser detection and diversity techniques

- Throughput (N_s) : The number of successfully received packets at a receiver at each slot
- N_s is a binomial random variable with parameters :
 - p_s: Probability of a packet successful reception
 - N: Number of packets transmitted to that receiver
- p_s is a function of N and Interference due to transmissions to other receivers, I

$$\gamma = E(N_s) = E(E(N_s|N,I))
= E(Np_s(N,I))
= \sum_{n=1}^{\infty} nE(p_s(n,I)) \Pr(N=n)$$

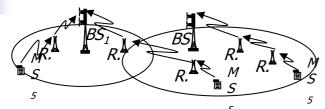
For the best very long codes

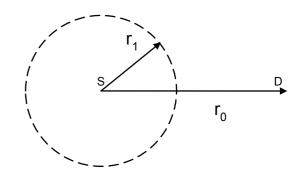
$$p_s(N,I) = \begin{cases} 1 & N + \frac{I}{P_x} < K(\mu_c) \\ 0 & N + \frac{I}{P_x} > K(\mu_c) \end{cases}$$

Throughput

$$\gamma = \sum_{n=1}^{\lfloor K(\mu_c) \rfloor} n \Pr(I/P_x < K(\mu_c) - n) \Pr(N = n)$$

System Model and Assumptions


- Two frequency bands carry the information on the uplink and downlink independently (FDD Mode)
- In each frequency band
 - Simultaneous transmission and reception is not practical
 - Routers use TDD mode to send and receive data
 - Change their mode alternatively at the end of each slot
- Medium access technique
 - Code Division Multiple Access (CDMA)
 - All nodes may send and receive on one or several channels (spreading sequence) dynamically allocated by base stations
- Synchronization
 - All nodes are required to be synchronized to reduce packet collision
 - Exact synchronization is only necessary within the range of a few hops


Assumptions

- Nodes are distributed as a two dimensional Poisson process
- Channel access protocol is slotted ALOHA
- In each slot, nodes try to transmit one packet with the fixed probability p regardless of the number of received packets
- In the uplink, ideal power control both at base station and repeaters

Interference

Interference calculation

$$f(r_0, r_1) = f(r_0)f(r_1|r_0) = \frac{2r_0}{a^2} \begin{cases} 2\pi \lambda r_1 \exp(-\lambda \pi r_1^2) & r_1 < r_0 \\ \exp(-\lambda \pi r_0^2)\delta(r_0 - r_1) & r_1 = r_0 \end{cases}$$

$$u = r_1/r_0$$

$$w = r_0$$

Interference (Cont'd)

$$f_U(u) = 2(1 - e^{-Nu^2}(1 + Nu^2))/Nu^3 + (1 - e^{-N})\delta(u - 1)/N$$

$$f_H(h) = \frac{1}{2} \frac{1 - e^{-N\sqrt{h}}(1 + N\sqrt{h})}{N(\sqrt{h})^3} + \frac{1 - e^{-N}}{N} \delta(h - 1)$$

$$\lim_{N \to \infty} N \int_0^1 h^n f_H(h) dh = \lim_{N \to \infty} \int_0^1 \frac{1}{2} h^{n-3/2} (1 - e^{-N\sqrt{h}} - e^{-N\sqrt{h}} N \sqrt{h}) dh + 1$$

$$= \int_0^1 \frac{1}{2} h^{n-3/2} dh + 1 = \frac{1}{2n-1} + 1 \qquad \text{for } n > 1/2$$

Interference (Cont'd)

$$M(s) = E(e^{sH}) = E\left(\sum_{k=0}^{\infty} \frac{(sH)^k}{k!}\right) = \sum_{k=0}^{\infty} \frac{s^k}{k!} E(H^k)$$

$$= 1 + \frac{1}{N} \sum_{k=1}^{\infty} \frac{s^k}{k!} (1 + \frac{1}{(2k-1)}) + O(\frac{1}{N^2}) = \frac{N - i\sqrt{s}\sqrt{\pi} \operatorname{erf}(i\sqrt{s})}{N} + O(\frac{1}{N^2})$$

$$M_T(\omega) = E(e^{i\omega} \sum^{H}) = \left(E(e^{i\omega H})\right)^N$$

$$= \lim_{N \to \infty} \left(1 - \frac{i}{N} \sqrt{(i\pi\omega)} \operatorname{erf}\left(i\sqrt{(i\omega)}\right) + O(\frac{1}{N^2})\right)^N$$

$$= \exp\left((1 - i) \sqrt{\pi\omega/2} \operatorname{erf}\left(-(1 - i) \sqrt{\omega/2}\right)\right) \quad \omega > 0$$

$$M_T(\omega) = M_T^*(-\omega)$$

$$f_{H_T}(h) = 2\operatorname{Re}\left\{\int_0^{\infty} \exp\left(-i\omega h + (1 - i) \sqrt{\pi\omega/2} \operatorname{erf}\left(-(1 - i) \sqrt{\omega/2}\right)\right) d\omega\right\}$$

- Throughput calculation gives us a measure that can be easily compared with maximum system capacity
- Models should be developed for calculating throughput for networks which use different techniques for increasing capacity
- Routing algorithms proposed so forth for multihop networking are mostly based on efficient connectivity, further work need to be done to consider the effect of air interference

- E. Biglieri, J. Proakis, S. Shamai, "Fading channels: information-theoretic and communications aspects," IEEE Trans. Inform.
 Theory, vol. 44, no. 6, Oct. 1998, pp. 2619-2692.
- A.G. Burr, "Space-time coding in the third generation and beyond," IEE colloquium capacity and range enhancement techniques for the third generation mobile commun. and beyond, Feb. 2000, pp. 1-7.
- A.R. Calderbank, "The art of signaling: Fifty years of coding theory," IEEE Trans. Inform. Theory, vol. 44, no. 6, Oct. 1998, pp. 2561-2595.
- A. Ephremides, B. Hajek, "Information theory and communication networks: An unconsummated union," IEEE Trans. Inform. Theory, vol. 44, no. 6, Oct. 1998, pp. 2416-2434.
- V. Tarokh, N. Seshadri, A.R. Calderbank, "Space-time codes for high data rate wireless communication: performance criterion and code construction," IEEE Trans. Inform. Theory, vol. 44, no. 2, Mar. 1998, pp. 744-765.

References (Cont'd)

- S. Verdu, "Wireless bandwidth in the making," IEEE Commun. Mag., vol. 38, no. 7, July 2000, pp. 53-58.
- G.J Foschini, M.J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Comm., 1998, pp. 311-335.
- J.H. Winters, "Smart antennas for wireless systems," IEEE Personal Commun., Feb. 1998, pp. 23-27.
- A.N. Zadeh, B. Jabbari, "Throughput Analysis for Wireless Packet CDMA Ad hoc Networks," submitted to ICC2001.
- E. Sousa, J.A. Silvester, "Optimum transmission ranges in a direct-sequence spread-spectrum multihop packet radio network," IEEE J. Selec. Areas Commun., vol. 8, no. 5, June 1990, pp. 762-771
- L. Kleinrock, J. Silvester, "Spatial reuse in multihop packet radio networks," Proc. of the IEEE, vol.75, no.1, Jan1987,pp. 156-167
- T.C Hou, Victor O.K Li, "Transmission range control in a multihop packet radio networks," IEEE Trans. Commun., vol COM-34, no.1, Jan. 1986, pp. 38-44.