Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)

Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software.

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-
readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website
http://www.nr.com or call 1-800-872-7423 (North America only), or send email to directcustserv@cambridge.org (outside North America).

C

ipes in

Second Edition
William H. Press
Harvard-Smithsonian Center for Astrophysics
Saul A. Teukolsky
Department of Physics, Cornell University
Polaroid Corporation
Brian P. Flannery
EXXON Research and Engineering Company

The Art of Scientific Computing
William T. Vetterling

Numerical Rec

CAMBRIDGE UNIVERSITY PRESS

Melbourne Sydney

Cambridge New York Port Chester

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

40 West 20th Street, New York, NY 10011-4211, USA

477 Williamstown Road, Port Melbourne, VIC, 3207, Australia

Copyright © Cambridge University Press 1988, 1992

except for§13.10 and Appendix B, which are placed into the public domain,
and except for all other computer programs and procedures, which are
Copyright© Numerical Recipes Software 1987, 1988, 1992, 1997, 2002
All Rights Reserved.

Some sections of this book were originally published, in different fornGamputers
in Physics magazine, Copyrigh American Institute of Physics, 1988—-1992.

First Edition originally published 1988; Second Edition originally published 1992.
Reprinted with corrections, 1993, 1994, 1995, 1997, 2002.
This reprinting is corrected to software version 2.10

Printed in the United States of America
Typeset in EX

Without an additional license to use the contained software, this book is intended as
a text and reference book, for reading purposes only. A free license for limited use of the
software by the individual owner of a copy of this book who personally types one of more
routines into a single computer is granted under terms described on p. xvii. See the section
“License Information” (pp. xvi—xviii) for information on obtaining more general licepses
at low cost.

Machine-readable media containing the software in this book, with included licenses
for use on a single screen, are available from Cambridge University Press. $ee the
order form at the back of the book, email to “orders@cup.org” (North Americg) or
“directcustserv@cambridge.org” (rest of world), or write to Cambridge University Press,
110 Midland Avenue, Port Chester, NY 10573 (USA), for further information.

The software may also be downloaded, with immediate purchase of a license
also possible, from the Numerical Recipes Software Web &itep(: //www.nr.com).
Unlicensed transfer of Numerical Recipes programs to any other format, or {o any
computer except one that is specifically licensed, is strictly prohibited. Technical quéstions,
corrections, and requests for information should be addressed to Numerical Recipes
Software, P.O. Box 380243, Cambridge, MA 02238-0243 (USA), email “info@nr.gom”,
or fax 781 863-1739.

Library of Congress Cataloging in Publication Data

Numerical recipes in C : the art of scientific computing / William H. Press
... [etal]. - 2nd ed.

Includes bibliographical references (p.) and index.
ISBN 0-521-43108-5

1. Numerical analysis—Computer programs. 2. Science—Mathematics—Computer programs.

3. C (Computer program language) |. Press, William H.
QA297.N866 1992
519.4028553-dc20 92-8876

A catalog record for this book is available from the British Library.

ISBN 0521 43108 5 Book

ISBN 0521 43720 2 Example book in C

ISBN 0 521 75037 7 C/C++ CDROM (Windows/Macintosh)
ISBN 0 521 75035 0 Complete CDROM (Windows/Macintosh)
ISBN 0521 75036 9 Complete CDROM (UNIX/Linux)

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) Bio abpugued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sq00q sadioay [ealswn 1apio 0] ‘pangiyold Apows si ‘1eindwod 1aaias Aue o} (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul 10} pajuelB si uoissiwiad

Contents

Preface to the Second Edition

Preface to the First Edition

License Information

Computer Programs by Chapter and Section

Preliminaries

1.0 Introduction

1.1 Program Organization and Control Structures
1.2 Some C Conventions for Scientific Computing
1.3 Error, Accuracy, and Stability

Solution of Linear Algebraic Equations

2.0 Introduction

2.1 Gauss-Jordan Elimination

2.2 Gaussian Elimination with Backsubstitution

2.3 LU Decomposition and Its Applications

2.4 Tridiagonal and Band Diagonal Systems of Equations
2.5 Iterative Improvement of a Solution to Linear Equations
2.6 Singular Value Decomposition

2.7 Sparse Linear Systems

2.8 Vandermonde Matrices and Toeplitz Matrices

2.9 Cholesky Decomposition

2.10 QR Decomposition

2.11 Is Matrix Inversion aiV 3 Process?

Interpolation and Extrapolation

3.0 Introduction

3.1 Polynomial Interpolation and Extrapolation

3.2 Rational Function Interpolation and Extrapolation
3.3 Cubic Spline Interpolation

3.4 How to Search an Ordered Table

3.5 Coefficients of the Interpolating Polynomial

3.6 Interpolation in Two or More Dimensions

\

Xi

Xiv

XVi

XiX

15
28

32

32
36
41
43
50
55
59
71
90
96
98
102

105

105
108
111
113
117
120
123

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) Bio abpugued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sq00q sadioay [ealswn 1apio 0] ‘pangiyold Apows si ‘1eindwod 1aaias Aue o} (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul 10} pajuelB si uoissiwiad

Vi Contents
4 Integration of Functions 129
4.0 Introduction 129
4.1 Classical Formulas for Equally Spaced Abscissas 130
4.2 Elementary Algorithms 136
4.3 Romberg Integration 140
4.4 Improper Integrals 141 SzT00
4.5 Gaussian Quadratures and Orthogonal Polynomials 14728583
4.6 Multidimensional Integrals 161 % %ggg
5308%
5 Evaluation of Functions 165 85553
5.0 Introduction 165 SE8Biz
5.1 Series and Their Convergence 165 =3¢ S
5.2 Evaluation of Continued Fractions 169 £2333
5.3 Polynomials and Rational Functions 173 %ii, 1 %;E
5.4 Complex Arithmetic 176 NS E&E
5.5 Recurrence Relations and Clenshaw’s Recurrence Formula 178&% z e T
5.6 Quadratic and Cubic Equations 183 23322
5.7 Numerical Derivatives 186 35820
5.8 Chebyshev Approximation 190 33283 T
5.9 Derivatives or Integrals of a Chebyshev-approximated Function 195 §§§ 5 >
5.10 Polynomial Approximation from Chebyshev Coefficients 197 g#;23
5.11 Economization of Power Series 198 = g’-é’ F
5.12 Pa@ Approximants 200 4358 2 Q
5.13 Rational Chebyshev Approximation 204 2% §§ E
5.14 Evaluation of Functions by Path Integration 208 3 g % &0
. . 55858
6 Special Functions 212 298L3
6.0 Introduction 212 § : ;_) § =
6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients ~ 213 %5 % §§
6.2 Incomplete Gamma Function, Error Function, Chi-Square SRR
Probability Function, Cumulative Poisson Function 216 & o2 §g
6.3 Exponential Integrals 222 %% 2%
6.4 Incomplete Beta Function, Student’s Distribution, F-Distribution, f‘; o g %g
Cumulative Binomial Distribution 226 < 858 %
6.5 Bessel Functions of Integer Order 230 2 3 ° i
6.6 Modified Bessel Functions of Integer Order 236 §8§ g
6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical g §§ 5
Bessel Functions 240 3757
6.8 Spherical Harmonics 252 329
6.9 Fresnel Integrals, Cosine and Sine Integrals 255 ij §§
6.10 Dawson’s Integral 259 3
6.11 Elliptic Integrals and Jacobian Elliptic Functions 261 '
6.12 Hypergeometric Functions 271
7 Random Numbers 274
7.0 Introduction 274
7.1 Uniform Deviates 275

Contents

Vii

10

11

7.2 Transformation Method: Exponential and Normal Deviates
7.3 Rejection Method: Gamma, Poisson, Binomial Deviates
7.4 Generation of Random Bits

7.5 Random Sequences Based on Data Encryption

7.6 Simple Monte Carlo Integration

7.7 Quasi- (that is, Sub-) Random Sequences

7.8 Adaptive and Recursive Monte Carlo Methods

Sorting

8.0 Introduction

8.1 Straight Insertion and Shell’s Method
8.2 Quicksort

8.3 Heapsort

8.4 Indexing and Ranking

8.5 Selecting thé/th Largest

8.6 Determination of Equivalence Classes

Root Finding and Nonlinear Sets of Equations

9.0 Introduction
9.1 Bracketing and Bisection

9.2 Secant Method, False Position Method, and Ridders’ Method

9.3 Van Wijngaarden—Dekker—Brent Method
9.4 Newton-Raphson Method Using Derivative
9.5 Roots of Polynomials

9.6 Newton-Raphson Method for Nonlinear Systems of Equations

287
290
296
300
304
309
316

329

329
330
332
336
338
341
345

347

347
350

354

359
362
369
379

9.7 Globally Convergent Methods for Nonlinear Systems of Equations 383

Minimization or Maximization of Functions

10.0 Introduction
10.1 Golden Section Search in One Dimension

10.2 Parabolic Interpolation and Brent’s Method in One Dimension

10.3 One-Dimensional Search with First Derivatives

10.4 Downhill Simplex Method in Multidimensions

10.5 Direction Set (Powell’s) Methods in Multidimensions
10.6 Conjugate Gradient Methods in Multidimensions
10.7 Variable Metric Methods in Multidimensions

10.8 Linear Programming and the Simplex Method

10.9 Simulated Annealing Methods

Eigensystems

11.0 Introduction

11.1 Jacobi Transformations of a Symmetric Matrix

11.2 Reduction of a Symmetric Matrix to Tridiagonal Form:
Givens and Householder Reductions

11.3 Eigenvalues and Eigenvectors of a Tridiagonal Matrix

11.4 Hermitian Matrices

11.5 Reduction of a General Matrix to Hessenberg Form

394

394
397
402
405
408
412
420
425
430
444

456

456
463

469
475
481
482

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

viii Contents
11.6 The QR Algorithm for Real Hessenberg Matrices 486
11.7 Improving Eigenvalues and/or Finding Eigenvectors by
Inverse Iteration 493
12 Fast Fourier Transform 496
12.0 Introduction 496
12.1 Fourier Transform of Discretely Sampled Data 500
12.2 Fast Fourier Transform (FFT) 504
12.3 FFT of Real Functions, Sine and Cosine Transforms 510
12.4 FFT in Two or More Dimensions 521
12.5 Fourier Transforms of Real Data in Two and Three Dimensions 525
12.6 External Storage or Memory-Local FFTs 532
13 Fourier and Spectral Applications 537
13.0 Introduction 537
13.1 Convolution and Deconvolution Using the FFT 538
13.2 Correlation and Autocorrelation Using the FFT 545
13.3 Optimal (Wiener) Filtering with the FFT 547
13.4 Power Spectrum Estimation Using the FFT 549
13.5 Digital Filtering in the Time Domain 558
13.6 Linear Prediction and Linear Predictive Coding 564
13.7 Power Spectrum Estimation by the Maximum Entropy
(All Poles) Method 572
13.8 Spectral Analysis of Unevenly Sampled Data 575
13.9 Computing Fourier Integrals Using the FFT 584
13.10 Wavelet Transforms 591
13.11 Numerical Use of the Sampling Theorem 606
14 Statistical Description of Data 609
14.0 Introduction 609
14.1 Moments of a Distribution: Mean, Variance, Skewness,
and So Forth 610
14.2 Do Two Distributions Have the Same Means or Variances? 615
14.3 Are Two Distributions Different? 620
14.4 Contingency Table Analysis of Two Distributions 628
14.5 Linear Correlation 636
14.6 Nonparametric or Rank Correlation 639
14.7 Do Two-Dimensional Distributions Differ? 645
14.8 Savitzky-Golay Smoothing Filters 650
15 Modeling of Data 656
15.0 Introduction 656
15.1 Least Squares as a Maximum Likelihood Estimator 657
15.2 Fitting Data to a Straight Line 661
15.3 Straight-Line Data with Errors in Both Coordinates 666
15.4 General Linear Least Squares 671
15.5 Nonlinear Models 681

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

Contents

16

17

18

19

20

15.6 Confidence Limits on Estimated Model Parameters
15.7 Robust Estimation

Integration of Ordinary Differential Equations

16.0 Introduction

16.1 Runge-Kutta Method

16.2 Adaptive Stepsize Control for Runge-Kutta

16.3 Modified Midpoint Method

16.4 Richardson Extrapolation and the Bulirsch-Stoer Method
16.5 Second-Order Conservative Equations

16.6 Stiff Sets of Equations

16.7 Multistep, Multivalue, and Predictor-Corrector Methods

Two Point Boundary Value Problems

17.0 Introduction

17.1 The Shooting Method

17.2 Shooting to a Fitting Point

17.3 Relaxation Methods

17.4 A Worked Example: Spheroidal Harmonics

17.5 Automated Allocation of Mesh Points

17.6 Handling Internal Boundary Conditions or Singular Points

Integral Equations and Inverse Theory

18.0 Introduction

18.1 Fredholm Equations of the Second Kind

18.2 Volterra Equations

18.3 Integral Equations with Singular Kernels

18.4 Inverse Problems and the Use of A Priori Information
18.5 Linear Regularization Methods

18.6 Backus-Gilbert Method

18.7 Maximum Entropy Image Restoration

Partial Differential Equations

19.0 Introduction

19.1 Flux-Conservative Initial Value Problems

19.2 Diffusive Initial Value Problems

19.3 Initial Value Problems in Multidimensions

19.4 Fourier and Cyclic Reduction Methods for Boundary
Value Problems

19.5 Relaxation Methods for Boundary Value Problems

19.6 Multigrid Methods for Boundary Value Problems

Less-Numerical Algorithms

20.0 Introduction
20.1 Diagnosing Machine Parameters
20.2 Gray Codes

689
699

707

707
710
714
722
724
732
734
747

753

753
757
760
762

772
783
784

788

788
791
794
797
804
808
815
818

827

827
834
847
853

857
863
871

889

889
889
894

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

Contents

896
903

910

20.3 Cyclic Redundancy and Other Checksums
20.4 Huffman Coding and Compression of Data

20.5 Arithmetic Coding

915

20.6 Arithmetic at Arbitrary Precision

926

References

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)

Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software.

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-
readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website
http://www.nr.com or call 1-800-872-7423 (North America only), or send email to directcustserv@cambridge.org (outside North America).

930
940
948
951
965

Appendix A: Table of Prototype Declarations
Appendix C: Complex Arithmetic
Index of Programs and Dependencies

Appendix B: Utility Routines

General Index

Preface to the Second Edition

Our aim in writing the original edition oNumerical Recipeswas to provide a
book that combined general discussion, analytical mathematics, algorithmics, and
actual working programs. The success of the first edition puts us now in a difficult,
though hardly unenviable, position. We wanted, then and now, to write a book 2
that is informal, fearlessly editorial, unesoteric, and above all useful. There is a
danger that, if we are not careful, we might produce a second edition that is weighty s
balanced, scholarly, and boring. %
It is a mixed blessing that we know more now than we did six years ago. Then, g
we were making educated guesses, based on existing literature and our own resear
about which numerical techniques were the most important and robust. Now, we hav
the benefit of direct feedback from a large reader community. Letters to our alter-egos
enterprise, Numerical Recipes Software, are in the thousands per year. (Bbadse,
telephone us.) Our post office box has become a magnet for letters pointing out
that we have omitted some particular technique, well known to be important in
particular field of science or engineering. We value such letters, and digest the
carefully, especially when they point us to specific references in the literature.
The inevitable result of this input is that this Second EditionNoifmerical
Recipes is substantially larger than its predecessor, in fact about 50% larger both in
words and number of included programs (the latter now numbering well over 300).
“Don’t let the book grow in size,” is the advice that we received from several wise
colleagues. We have tried to follow the intended spirit of that advice, even as wes
violate the letter of it. We have not lengthened, or increased in difficulty, the book’s &
principal discussions of mainstream topics. Many new topics are presented at thi
same accessible level. Some topics, both from the earlier edition and new to thi
one, are now set in smaller type that labels them as being “advanced.” The read
who ignores such advanced sections completely will not, we think, find any lack of
continuity in the shorter volume that results.
Here are some highlights of the new material in this Second Edition:
e a new chapter on integral equations and inverse methods
a detailed treatment of multigrid methods for solving elliptic partial
differential equations
routines for band diagonal linear systems
improved routines for linear algebra on sparse matrices
Cholesky and QR decomposition
orthogonal polynomials and Gaussian quadratures for arbitrary weight
functions
methods for calculating numerical derivatives
e Pack approximants, and rational Chebyshev approximation
e Bessel functions, and modified Bessel functions, of fractional order; and
several other new special functions

e improved random number routines

e quasi-random sequences

e routines for adaptive and recursive Monte Carlo integration in high-
dimensional spaces

¢ globally convergent methods for sets of nonlinear equations

dny

Ipnjout) sajy a|qepeal

//

080

3

q§ Q
ON) £272-2.8

]%JI
81ISgaM JISIA ‘SINOHAD 10 sqo0q sadiday [eduswnp Japlo o] ‘pauqgiyold Apouis si 48indwod 1anias Aue 0] (auo Siy
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul 10} pajuelB si uoissiwiad

puas .o ‘(Ajuo eauswy

Borfew

°
‘(eauawy YuUoN apisino) Bio abpugqued@Aiasisnd

Xi

&

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

Xii Preface to the Second Edition

simulated annealing minimization for continuous control spaces

fast Fourier transform (FFT) for real data in two and three dimensions
fast Fourier transform (FFT) using external storage

improved fast cosine transform routines

wavelet transforms

Fourier integrals with upper and lower limits

spectral analysis on unevenly sampled data

Savitzky-Golay smoothing filters

fitting straight line data with errors in both coordinates

a two-dimensional Kolmogorov-Smirnoff test

the statistical bootstrap method

embedded Runge-Kutta-Fehlberg methods for differential equations
high-order methods for stiff differential equations

a new chapter on “less-numerical” algorithms, including Huffman and
arithmetic coding, arbitrary precision arithmetic, and several other topics.
Consult the Preface to the First Edition, following, or the Table of Contents, for a
list of the more “basic” subjects treated.

Acknowledgments

DLBWY YUON) £272-2/8-008-T [[€2 10 WO Ju"MmM//:dny

It is not possible for us to list by name here all the readers who have madeg
useful suggestions; we are grateful for these. In the text, we attempt to give specifi€
attribution for ideas that appear to be original, and not known in the literature. We £
apologize in advance for any omissions.

Some readers and colleagues have been particularly generous in providin
us with ideas, comments, suggestions, and programs for this Second Edition=
We especially want to thank George Rybicki, Philip Pinto, Peter Lepage, Roberti
Lupton, Douglas Eardley, Ramesh Narayan, David Spergel, Alan Oppenheim, Sallieg
Baliunas, Scott Tremaine, Glennys Farrar, Steven Block, John Peacock, Thomag
Loredo, Matthew Choptuik, Gregory Cook, L. Samuel Finn, P. Deuflhard, Harold
Lewis, Peter Weinberger, David Syer, Richard Ferch, Steven Ebstein, Bradle
Keister, and William Gould. We have been helped by Nancy Lee Snyder’s mastery
of a complicated X manuscript. We express appreciation to our editors Lauren
Cowles and Alan Harvey at Cambridge University Press, and to our production editor:
Russell Hahn. We remain, of course, grateful to the individuals acknowledged in
the Preface to the First Edition.

Special acknowledgment is due to programming consultant Seth Finkelstein
who wrote, rewrote, or influenced many of the routines in this book, as well as in
its FORTRAN-language twin and the companion Example books. Our project has
benefited enormously from Seth’s talent for detecting, and following the trail of, eve
very slight anomalies (often compiler bugs, but occasionally our errors), and from:
his good programming sense. To the extent that this editidvuoderical Recipes
in C has a more graceful and “C-like” programming style than its predecessor, most
of the credit goes to Seth. (Of course, we accept the blame for the FORTRANIsh
lapses that still remain.)

We prepared this book for publication on DEC and Sun workstations run-
ning the UNIX operating system, and on a 486/33 PC compatible running
MS-DOS 5.0/Windows 3.0. (Se#l.0 for a list of additional computers used in

&R pua

e

e‘ﬁ%/ues

81ISgaM NISIA ‘SINOHAD 10 so0q sadiday [eduswnN JQpJO 0] ‘panqyosd /(poms sl ‘Jaindwod Jan1as Aue 03 (suo siyy Buipnjour) saji ajgepesal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

qui

‘(eauBWY YLON apIsIno) ﬁJ(Teﬁpu

>

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

Preface to the Second Edition Xiii

program tests.) We enthusiastically recommend the principal software used: GNU
Emacs, EX, Perl, Adobe lllustrator, and PostScript. Also used were a variety of C
compilers — too humerous (and sometimes too buggy) for individual acknowledg-
ment. It is a sobering fact that our standard test suite (exercising all the routines
in this book) has uncovered compiler bugs in many of the compilers tried. When
possible, we work with developers to see that such bugs get fixed; we encourag
interested compiler developers to contact us about such arrangements.

WHP and SAT acknowledge the continued support of the U.S. National Science
Foundation for their research on computational methods. D.A.R.P.A. support is:
acknowledged fo13.10 on wavelets.

dny @

MMM/

June, 1992 William H. Press
Saul A. Teukolsky
William T. Vetterling
Brian P. Flannery

-2/8-008-T [[ed 40 Wod"Iu

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWyY YUON apisino) Bio abpugued@AIasisnoloalip 0] [lewa puas Jo ‘(Ajuo eauawy YUON) €2/
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

Preface to the First Edition

We call this booNumerical Recipesfor several reasons. In one sense, this book
is indeed a “cookbook” on numerical computation. However there is an important

Z3
distinction between a cookbook and a restaurant menu. The latter presents choicéss
among complete dishes in each of which the individual flavors are blended andg
disguised. The former — and this book — reveals the individual ingredients and 5
explains how they are prepared and combined. %
Another purpose of the title is to connote an eclectic mixture of presentational o
techniques. This book is unique, we think, in offering, for each topic considered, &
a certain amount of general discussion, a certain amount of analytical mathematicsy

a certain amount of discussion of algorithmics, and (most important) actual imple- <
mentations of these ideas in the form of working computer routines. Our task has;
been to find the right balance among these ingredients for each topic. You WI||
find that for some topics we have tilted quite far to the analytic side; this where we
have felt there to be gaps in the “standard” mathematical training. For other topics
where the mathematical prerequisites are universally held, we have tilted toward
more in-depth discussion of the nature of the computational algorithms, or towardsz
practical questions of implementation.

We admit, therefore, to some unevenness in the “level” of this book. About half £
of it is suitable for an advanced undergraduate course on numerical computation fof?
science or engineering majors. The other half ranges from the level of a graduatg
course to that of a professional reference. Most cookbooks have, after all, recipes &
varying levels of complexity. An attractive feature of this approach, we think, is that 2=
the reader can use the book at increasing levels of sophistication as his/her experienéeg
grows. Eveninexperienced readers should be able to use our most advanced routingﬁ
as black boxes. Having done so, we hope that these readers will subsequently ga z
back and learn what secrets are inside.

If there is a single dominant theme in this book, it is that practical methods
of numerical computation can be simultaneously efficient, clever, and — importan
— clear. The alternative viewpoint, that efficient computational methods mus
necessarily be so arcane and complex as to be useful only in “black box” form,:
we firmly reject.

Our purpose in this book is thus to open up a large number of computationalz
black boxes to your scrutiny. We want to teach you to take apart these black boxe
and to put them back together again, modifying them to suit your specific needs.
We assume that you are mathematically literate, i.e., that you have the norma
mathematical preparation associated with an undergraduate degree in a physical
science, or engineering, or economics, or a quantitative social science. We assu
that you know how to program a computer. We do not assume that you have any
prior formal knowledge of numerical analysis or numerical methods.

The scope ofNumerical Recipes is supposed to be “everything up to, but
not including, partial differential equations.” We honor this in the breach: First,
we do have one introductory chapter on methods for partial differential equations
(Chapter 19). Second, we obviously cannot incledieything else. All the so-called
“standard” topics of a numerical analysis course have been included in this book:

%’LB 008~

ubdy GuUoN) £2vL-

Juo e:ﬁna
‘panquyoud /(poms sl ‘Jaindwod Jan1as Aue 03 (suo siy) ﬁu!pnpu!) saly 9|q

— =

@Bpisino) 61o° eﬁpuqujeo@/ues

%o@wv’uuoN

3)ISaM 1ISIA ‘SNOXAD 10 sy00q sadioay [eauswnN

Xiv

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayun4 -asn |eu0519d umo J1ay} Joy Adoo Jaded suo axew 0] s1asn 18ulalUl 10} pajuelB sI uoissiwiad

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

Preface to the First Edition XV

linear equations (Chapter 2), interpolation and extrapolation (Chaper 3), integration
(Chaper 4), nonlinear root-finding (Chapter 9), eigensystems (Chapter 11), and
ordinary differential equations (Chapter 16). Most of these topics have been taken
beyond their standard treatments into some advanced material which we have felt
to be particularly important or useful.

Some other subjects that we cover in detail are not usually found in the standard
numerical analysis texts. These include the evaluation of functions and of particulag
special functions of higher mathematics (Chapters 5 and 6); random numbers an
Monte Carlo methods (Chapter 7); sorting (Chapter 8); optimization, including :
multidimensional methods (Chapter 10); Fourier transform methods, including FFT:
methods and other spectral methods (Chapters 12 and 13); two chapters on t

00" JU"MMER/: ATy

3

B1ISgaM NISIA ‘SINOHAD 10 s00q sadioay [edlswn 1apio o] ‘paugiyold Ajpois si ‘1aindwod JIsAIss Aue 01 (auo syl Buipnjour) sajiy ajqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

statistical description and modeling of data (Chapters 14 and 15); and two-pointg 3
boundary value problems, both shooting and relaxation methods (Chapter 17). -

The programs in this book are included in ANSI-standardversions of the 8
book in FORTRAN, Pascal, andBASIC are available separately. We have more g
to say about the& language, and the computational environment assumed by our 3
routines, in§1.1 (Introduction). P

Acknowledgments

Bouswy YyuoN

Many colleagues have been generous in giving us the benefit of their numerica
and computational experience, in providing us with programs, in commenting on
the manuscript, or in general encouragement. We particularly wish to thank George
Rybicki, Douglas Eardley, Philip Marcus, Stuart Shapiro, Paul Horowitz, Bruce
Musicus, Irwin Shapiro, Stephen Wolfram, Henry Abarbanel, Larry Smatrr, Richard
Muller, John Bahcall, and A.G.W. Cameron.

We also wish to acknowledge two individuals whom we have never met: Forman
Acton, whose 1970 textbodkumerical Methods that Work (New York: Harper and
Row) has surely left its stylistic mark on us; and Donald Knuth, both for his series
of books onThe Art of Computer Programming (Reading, MA: Addison-Wesley),
and for X, the computer typesetting language which immensely aided production
of this book.

Research by the authors on computational methods was supported in part bg
the U.S. National Science Foundation.

P (A|uo
(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

October, 1985 William H. Press
Brian P. Flannery
Saul A. Teukolsky
William T. Vetterling

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

"(eduBWY YLON 3pIsINo) 610" aBprgWed @AI8SISNo10a.Ip 0] [rews puas i

License Information

Disclaimer of Warranty

We make no warranties, express or implied, that the programs contained
in thisvolume arefree of error, or are consistent with any particular standard
of merchantability, or that they will meet your requirementsfor any particular
application. They should not berelied on for solving a problem whoseincorrect
solution could result in injury to a person or loss of property. If you do use the
programsin such a manner, it is at your own risk. The authors and publisher
disclaim all liability for direct or consequential damages resulting from your
use of the programs.

How to Get the Code onto Your Computer

Pick one of the following methods:

e You can type the programs from this book directly into your computer. In this
case, theonly kind of license available to you is the free “immediate license”
(see below). You are not authorized to transfer or distribute a machine-readable
copy to any other person, nor to have any other person type the programs into a
computer on your behalf. We do not want to hear bug reports from you if you
choose this option, because experience has shownitizdlly all reported bugs

in such cases are typing errors!

You can download the Numerical Recipes programs electronically from the
Numerical Recipes On-Line Software Store, locatetatp : //www.nr . com, our

Web site. All the files (Recipes and demonstration programs) are packaged as
a single compressed file. You'll need to purchase a license to download and
unpack them. Any number of single-screen licenses can be purchased instantly
(with discount for multiple screens) from the On-Line Store, with fees that depend
on your operating system (Windows or Macintosh versus Linux or UNIX) and
whether you are affiliated with an educational institution. Purchasing a single-
screen license is also the way to start if you want to acquire a more general (site
or corporate) license; your single-screen cost will be subtracted from the cost of
any later license upgrade.

You can purchase media containing the programs from Cambridge University Press.
A CD-ROM version in ISO-9660 format for Windows and Macintosh systems
contains the complete C software, and also the C++ version. More extensive CD-
ROMs in ISO-9660 format for Windows, Macintosh, and UNIX/Linux systems are
also available; these include the C, C++, and Fortran versions on a single CD-ROM
(as well as versions in Pascal and BASIC from the first edition). These CD-ROMs
are available with a single-screen license for Windows or Macintosh (order ISBN
0 521 750350), or (at a slightly higher price) with a single-screen license for
UNIX/Linux workstations (order ISBN 0 521 750369). Orders for media from
Cambridge University Press can be placed at 800 872-7423 (North America only)
or by email to orders@cup.org (North America) or directcustserv@cambridge.org
(rest of world). Or, visit the Web sitettp://wuw.cambridge.org.

XVi

Read this section if you want to use the programs in this book on a computer.
You'll need to read the following Disclaimer of Warranty, get the programs onto your
computer, and acquire a Numerical Recipes software license. (Without this license,
which can be the free “immediate license” under terms described below, the book i
intended as a text and reference book, for reading purposes only.)

*(eouaWy YUON apisino) 610°abpLguwes@AIssisnoloalip 0] |rews puas o ‘(Ajuo eauswy YUON) £2/-2/8-008-T |2 Jo Luo:)'Ju‘MMM//:duLin

81ISgaM NISIA ‘SINOHAD 10 sq00q sadioay [ealswn 1apio 0] ‘pangiyold Apows si ‘1eindwod 1aaias Aue o} (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul 10} pajuelB si uoissiwiad

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

License Information XVii

Types of License Offered

Here are the types of licenses that we offer. Note that some types are
automatically acquired with the purchase of media from Cambridge University
Press, or of an unlocking password from the Numerical Recipes On-Line Software
Store, while other types of licenses require that you communicate specifically with
Numerical Recipes Software (email: orders@nr.com or fax: 781 863-1739). Our
Web sitehttp://www.nr.com has additional information.

dny

e [‘Immediate License”] If you are the individual owner of a copy of this book and
you type one or more of its routines into your computer, we authorize you to use
them on that computer for your own personal and noncommercial purposes. You
are not authorized to transfer or distribute machine-readable copies to any other
person, or to use the routines on more than one machine, or to distribute executable
programs containing our routines. This is the only free license.

e [“Single-Screen License”] This is the most common type of low-cost license, with
terms governed by our Single Screen (Shrinkwrap) License document (complete
terms available through our Web site). Basically, this license lets you use Numerical
Recipes routines on any one screen (PC, workstation, X-terminal, etc.). You may
also, under this license, transfer pre-compiled, executable programs incorporating
our routines to other, unlicensed, screens or computers, providing that (i) your
application is noncommercial (i.e., does not involve the selling of your program
for a fee), (ii) the programs were first developed, compiled, and successfully run
on a licensed screen, and (iii) our routines are bound into the programs in such a
manner that they cannot be accessed as individual routines and cannot practicably
be unbound and used in other programs. That is, under this license, your program
user must not be able to use our programs as part of a program library or “mix-and-
match” workbench. Conditions for other types of commercial or noncommercial
distribution may be found on our Web sitettp: //www.nr.com).

e [“Multi-Screen, Server, Site, and Corporate Licenses”] The terms of the Single
Screen License can be extended to designated groups of machines, defined by
number of screens, number of machines, locations, or ownership. Significant
discounts from the corresponding single-screen prices are available when the
estimated number of screens exceeds 40. Contact Numerical Recipes Software
(email: orders@nr.com or fax: 781 863-1739) for details.

e [“‘Course Right-to-Copy License”] Instructors at accredited educational institutions
who have adopted this book for a course, and who have already purchased a Single
Screen License (either acquired with the purchase of media, or from the Numerical
Recipes On-Line Software Store), may license the programs for use in that course
as follows: Mail your name, title, and address; the course name, number, dates,
and estimated enrollment; and advance paymerfi5oper (estimated) student
to Numerical Recipes Software, at this address: P.O. Box 243, Cambridge, MA
02238 (USA). You will receive by return mail a license authorizing you to make
copies of the programs for use by your students, and/or to transfer the programs to
a machine accessible to your students (but only for the duration of the course).

"(eauBWY YUON 3pIsino) 610 aBpuguwied@Alasisnaloalip 0} [lews puas o ‘(Ajuo eauawy YUON) £21/-2/.8-008-T [[ed 10 Wod UMMM/

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

About Copyrights on Computer Programs

Like artistic or literary compositions, computer programs are protected by
copyright. Generally it is an infringement for you to copy into your computer a
program from a copyrighted source. (It is also not a friendly thing to do, since it
deprives the program’s author of compensation for his or her creative effort.) Under

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

Xviii License Information

copyright law, all “derivative works” (modified versions, or translations into another
computer language) also come under the same copyright as the original work.

Copyright does not protect ideas, but only the expression of those ideas in
a particular form. In the case of a computer program, the ideas consist of the
program’s methodology and algorithm, including the necessary sequence of steps
adopted by the programmer. The expression of those ideas is the program source
code (particularly any arbitrary or stylistic choices embodied in it), its derived object §
code, and any other derivative works.

If you analyze the ideas contained in a program, and then express thos
ideas in your own completely different implementation, then that new program g
implementation belongs to you. That is what we have done for those programs in§
this book that are not entirely of our own devising. When programs in this book are g
said to be “based” on programs published in copyright sources, we mean that the-
ideas are the same. The expression of these ideas as source code is our own.
believe that no material in this book infringes on an existing copyright.

u%/vw\// dny

@ sy Buipnjoun) sajy ajqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

e Pires s

Trademarks

Several registered trademarks appear within the text of this book: Sun is
trademark of Sun Microsystems, Inc. SPARC and SPARCstation are trademar
of SPARC International, Inc. Microsoft, Windows 95, Windows NT, PowerStation,
and MS are trademarks of Microsoft Corporation. DEC, VMS, Alpha AXP, and
ULTRIX are trademarks of Digital Equipment Corporation. IBM is a trademark of
International Business Machines Corporation. Apple and Macintosh are trademark
of Apple Computer, Inc. UNIX is a trademark licensed exclusively through X/Open
Co. Ltd. IMSL is a trademark of Visual Numerics, Inc. NAG refers to proprietary
computer software of Numerical Algorithms Group (USA) Inc. PostScript and
Adobe lllustrator are trademarks of Adobe Systems Incorporated. Last, and no dou
least, Numerical Recipes (when identifying products) is a trademark of Numerica
Recipes Software.

=~

udk 1o ‘(Aluo e:)u@'luvmuuoN) €2V.1-2.8-

(=}
81ISgaM NISIA ‘SINOHAD 10 s¥o0q sadioay [eduswnp 18pJo 0] ‘pauqiyold Apows si 19indwod 1anias Aue o] (a

NoJ0StIP 0] [rews p

Attributions

“abpLqueI ®AISSIS

The fact that ideas are legally “free as air” in no way supersedes the ethlca
requirement that ideas be credited to their known originators. When programs i
this book are based on known sources, whether copyrighted or in the public domaln
published or “handed-down,” we have attempted to give proper attribution. Unfor-
tunately, the lineage of many programs in common circulation is often unclear. We
would be grateful to readers for new or corrected information regarding attributions,
which we will attempt to incorporate in subsequent printings.

mo) ao

“(eouBWY YUON 8pIs!

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

1.0
11
11
11

21

2.3
2.3
24
24
24
24
25
26
26
26
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.8
2.8
29
29
2.10
2.10
2.10
2.10
2.10

3.1
3.2
3.3
3.3
3.4

Computer Programs

by Chapter and Section

flmoon
julday
badluk
caldat

gaussj

ludcmp
lubksb
tridag
banmul
bandec
banbks
mprove
svbksb
svdcmp
pythag
cyclic
sprsin
sprsax
sprstx
sprstp
sprspm
sprstm
linbcg
snrm
atimes
asolve
vander
toeplz
choldc
cholsl
qrdcmp
qrsolv
rsolv
qrupdt
rotate

polint
ratint
spline
splint
locate

calculate phases of the moon by date

Julian Day number from calendar date
Friday the 13th when the moon is full
calendar date from Julian day number

Gauss-Jordan matrix inversion and linear equation

solution

linear equation solution, LU decomposition
linear equation solution, backsubstitution
solution of tridiagonal systems

multiply vector by band diagonal matrix
band diagonal systems, decomposition
band diagonal systems, backsubstitution
linear equation solution, iterative improvement
singular value backsubstitution

singular value decomposition of a matrix
calculate (a? + b?)'/? without overflow
solution of cyclic tridiagona systems
convert matrix to sparse format

product of sparse matrix and vector
product of transpose sparse matrix and vector
transpose of sparse matrix

pattern multiply two sparse matrices
threshold multiply two sparse matrices
biconjugate gradient solution of sparse systems
used by 1linbcg for vector norm

used by Linbcg for sparse multiplication
used by 1inbcg for preconditioner

solve Vandermonde systems

solve Toeplitz systems

Cholesky decomposition

Cholesky backsubstitution

QR decomposition

QR backsubstitution

right triangular backsubstitution

update a QR decomposition

Jacabi rotation used by qrupdt

polynomial interpolation

rational function interpolation
construct a cubic spline

cubic spline interpolation

search an ordered table by bisection

XiX

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) Bio abpugued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sq00q sadioay [ealswn 1apio 0] ‘pangiyold Apows si ‘1eindwod 1aaias Aue o} (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul 10} pajuelB si uoissiwiad

XX Computer Programs by Chapter and Section
34 hunt search a table when calls are correlated
35 polcoe polynomial coefficients from table of values
35 polcof polynomial coefficients from table of values
36 polin2 two-dimensional polynomial interpolation
3.6 bcucof construct two-dimensional bicubic
3.6 bcuint two-dimensional bicubic interpolation
3.6 splie2 construct two-dimensiona spline
3.6 splin2 two-dimensional spline interpolation
4.2 trapzd trapezoidal rule
4.2 qtrap integrate using trapezoidal rule
4.2 qsimp integrate using Simpson’s rule
4.3 qromb integrate using Romberg adaptive method
4.4 midpnt extended midpoint rule
4.4 qromo integrate using open Romberg adaptive method
44 midinf integrate a function on a semi-infinite interval
4.4 midsql integrate a function with lower square-root singularity
4.4 midsqu integrate a function with upper square-root singularity
44 midexp integrate a function that decreases exponentially
45 qgaus integrate a function by Gaussian quadratures
45 gauleg Gauss-L egendre weights and abscissas
45 gaulag Gauss-L aguerre weights and abscissas
45 gauher Gauss-Hermite weights and abscissas
45 gaujac Gauss-Jacobi weights and abscissas
45 gaucof quadrature weights from orthogonal polynomials
45 orthog construct nonclassical orthogona polynomials
4.6 quad3d integrate a function over a three-dimensional space
51 eulsum sum a series by Euler—van Wijngaarden algorithm
53 ddpoly evaluate a polynomial and its derivatives
53 poldiv divide one polynomial by another
5.3 ratval evaluate a rational function
5.7 dfridr numerical derivative by Ridders method
5.8 chebft fit a Chebyshev polynomial to a function
5.8 chebev Chebyshev polynomial evaluation
59 chder derivative of afunction already Chebyshev fitted
59 chint integrate a function already Chebyshev fitted
5.10 chebpc polynomial coefficients from a Chebyshev fit
5.10 pcshft polynomial coefficients of a shifted polynomial
511 pccheb inverse of chebpc; use to economize power series
5.12 pade Padé approximant from power series coefficients
5.13 ratlsq rational fit by least-squares method
6.1 gammln logarithm of gamma function
6.1 factrl factorial function
6.1 bico binomial coefficients function
6.1 factln logarithm of factorial function

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

Computer Programs by Chapter and Section XXi

6.1
6.2
6.2
6.2
6.2
6.2
6.2
6.2
6.3
6.3
6.4
6.4
6.5
6.5
6.5
6.5
6.5
6.5
6.6
6.6
6.6
6.6
6.6
6.6
6.7
6.7
6.7
6.7
6.7
6.8
6.9
6.9
6.10
6.11
6.11
6.11
6.11
6.11
6.11
6.11
6.11
6.12
6.12
6.12

7.1
7.1

beta
gammp
gammq
gser
gct
erff
erffc
erfcc
expint
ei
betai
betact
bessjo
bessy0
bessji1
bessyl
bessy
bessj
bessiO
besskO
bessil
besskl
bessk
bessi
bessjy
beschb
bessik
airy
sphbes
plgndr
frenel
cisi
dawson
rf

rd

rj

rc
ellf
elle
ellpi
sncndn
hypgeo
hypser
hypdrv

ran0
ranl

beta function

incomplete gamma function

complement of incomplete gamma function
series used by gammp and gammq

continued fraction used by gammp and gammq
error function

complementary error function
complementary error function, concise routine
exponentia integral F,,

exponential integral Ei

incomplete beta function

continued fraction used by betai

Bessd function Jj

Bessdl function Y

Bessel function J;

Bessel function Y3

Bessel function Y of general integer order
Bessel function J of general integer order
modified Bessel function I

modified Bessel function K

modified Bessel function I

modified Bessel function K;

modified Bessel function K of integer order
modified Bessel function I of integer order
Bessel functions of fractional order
Chebyshev expansion used by bessjy
modified Bessel functions of fractional order
Airy functions

spherical Bessal functions j,, and y,,
Legendre polynomials, associated (spherical harmonics)
Fresnel integrals S(z) and C(z)

cosine and sine integrals Ci and Si
Dawson’s integral

Carlson’'s dliptic integral of the first kind
Carlson’'s elliptic integral of the second kind
Carlson’'s dliptic integral of the third kind
Carlson’s degenerate elliptic integral
Legendre elliptic integral of the first kind
Legendre elliptic integral of the second kind
Legendre elliptic integral of the third kind
Jacobian elliptic functions

complex hypergeometric function

complex hypergeometric function, series evaluation
complex hypergeometric function, derivative of

random deviate by Park and Miller minimal standard
random deviate, minimal standard plus shuffle

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

xXii Computer Programs by Chapter and Section
7.1 ran?2 random deviate by L’ Ecuyer long period plus shuffle
7.1 ran3 random deviate by Knuth subtractive method
7.2 expdev exponential random deviates
7.2 gasdev normally distributed random deviates
7.3 gamdev gamma-law distribution random deviates
7.3 poidev Poisson distributed random deviates
7.3 bnldev binomial distributed random deviates
74 irbitl random bit sequence
7.4 irbit2 random bit sequence
75 psdes “pseudo-DES’ hashing of 64 bits
75 rand random deviates from DES-like hashing
7.7 sobseq Sobol’s quasi-random sequence
7.8 vegas adaptive multidimensional Monte Carlo integration
7.8 rebin sample rebinning used by vegas
7.8 miser recursive multidimensional Monte Carlo integration
7.8 ranpt get random point, used by miser
8.1 piksrt sort an array by straight insertion
8.1 piksr2 sort two arrays by straight insertion
8.1 shell sort an array by Shell’s method
8.2 sort sort an array by quicksort method
8.2 sort2 sort two arrays by quicksort method
8.3 hpsort sort an array by heapsort method
8.4 indexx construct an index for an array
8.4 sort3 sort, use an index to sort 3 or more arrays
8.4 rank construct a rank table for an array
8.5 select find the Nth largest in an array
8.5 selip find the NVth largest, without atering an array
8.5 hpsel find M largest values, without atering an array
8.6 eclass determine equivalence classes from list
8.6 eclazz determine equival ence classes from procedure
9.0 scrsho graph a function to search for roots
9.1 zbrac outward search for brackets on roots
9.1 zbrak inward search for brackets on roots
9.1 rtbis find root of a function by bisection
9.2 rtflsp find root of a function by false-position
9.2 rtsec find root of afunction by secant method
9.2 zriddr find root of afunction by Ridders method
9.3 zbrent find root of afunction by Brent's method
94 rtnewt find root of afunction by Newton-Raphson
9.4 rtsafe find root of a function by Newton-Raphson and bisection
9.5 laguer find aroot of a polynomial by Laguerre’s method
9.5 zroots roots of a polynomial by Laguerre’s method with
deflation
95 zrhqr roots of a polynomial by eigenvalue methods
9.5 qroot complex or double root of a polynomial, Bairstow

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

Computer Programs by Chapter and Section XXiii

9.6
9.7
9.7
9.7
9.7
9.7

10.1
10.1
10.2
10.3
10.4
104
10.5
10.5
105
10.6
10.6
10.6
10.7
10.8
10.8
10.8
10.8
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9

111
111
11.2
11.3
115
115
116

122
12.3
12.3
12.3
12.3
12.3

mnewt
Insrch
newt
fdjac
fmin
broydn

mnbrak
golden
brent
dbrent
amoeba
amotry
powell
linmin
fidim
frprmn
dlinmin
dfldim
dfpmin
simplx
simpl
simp2
simp3
anneal
revcst
reverse
trncst
trnspt
metrop
amebsa
amotsa

jacobi
eigsrt
tred2
tqli
balanc
elmhes
hqr

fourl
twofft
realft
sinft
cosftl
cosft2

Newton’'s method for systems of equations

search along a line, used by newt

globally convergent multi-dimensional Newton’'s method
finite-difference Jacobian, used by newt

norm of a vector function, used by newt

secant method for systems of equations

bracket the minimum of a function

find minimum of a function by golden section search
find minimum of afunction by Brent's method

find minimum of a function using derivative information
minimizein N-dimensions by downhill simplex method
evaluate atria point, used by amoeba

minimize in N-dimensions by Powell’s method
minimum of afunction along aray in N-dimensions
function used by 1inmin

minimizein N-dimensions by conjugate gradient
minimum of a function along a ray using derivatives
function used by d1inmin

minimizein N-dimensions by variable metric method
linear programming maximization of alinear function
linear programming, used by simplx

linear programming, used by simplx

linear programming, used by simplx

traveling salesman problem by simulated annealing
cost of areversal, used by anneal

do areversal, used by anneal

cost of a transposition, used by anneal

do atransposition, used by anneal

Metropolis agorithm, used by anneal

simulated annealing in continuous spaces

evaluate atrial point, used by amebsa

eigenvalues and eigenvectors of a symmetric matrix
eigenvectors, sortsinto order by eigenvalue
Householder reduction of areal, symmetric matrix
eigensolution of a symmetric tridiagonal matrix
balance a nhonsymmetric matrix

reduce a general matrix to Hessenberg form
eigenvalues of a Hessenberg matrix

fast Fourier transform (FFT) in one dimension
fast Fourier transform of two real functions
fast Fourier transform of a single real function
fast sine transform

fast cosine transform with endpoints
“staggered” fast cosine transform

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

XXiv Computer Programs by Chapter and Section

124 fourn fast Fourier transform in multidimensions

125 rlft3 FFT of real datain two or three dimensions

12.6 fourfs FFT for huge data sets on external media

12.6 fourew rewind and permute files, used by fourfs

131 convlv convolution or deconvolution of data using FFT
13.2 correl correlation or autocorrelation of data using FFT
134 spctrm power spectrum estimation using FFT

13.6 memcof evaluate maximum entropy (MEM) coefficients
13.6 fixrts reflect roots of a polynomial into unit circle

13.6 predic linear prediction using MEM coefficients

137 evlimem power spectral estimation from MEM coefficients
13.8 period power spectrum of unevenly sampled data

13.8 fasper power spectrum of unevenly sampled larger data sets
13.8 spread extirpolate value into array, used by fasper

139 dftcor compute endpoint corrections for Fourier integrals
139 dftint high-accuracy Fourier integrals

13.10 wtl one-dimensional discrete wavelet transform

13.10 daub4d Daubechies 4-coefficient wavelet filter

13.10 pwtset initialize coefficients for pwt

13.10 pwt partial wavelet transform

13.10 wtn multidimensional discrete wavelet transform

141 moment calculate moments of a data set

14.2 ttest Student’s ¢-test for difference of means

14.2 avevar calculate mean and variance of a data set

14.2 tutest Student’s t-test for means, case of unequal variances
14.2 tptest Student’s ¢-test for means, case of paired data
14.2 ftest F-test for difference of variances

14.3 chsone chi-square test for difference between data and model
14.3 chstwo chi-square test for difference between two data sets
14.3 ksone Kolmogorov-Smirnov test of data against model
14.3 kstwo Kolmogorov-Smirnov test between two data sets
14.3 probks Kolmogorov-Smirnov probability function

144 cntabl contingency table analysis using chi-square

144 cntab2 contingency table analysis using entropy measure
145 pearsn Pearson’s correlation between two data sets

14.6 spear Spearman’s rank correlation between two data sets
14.6 crank replaces array elements by their rank

14.6 kendl1 correlation between two data sets, Kendall’s tau
14.6 kend12 contingency table analysis using Kendall’s tau
14.7 ks2d1ls K-S test in two dimensions, data vs. model

14.7 quadct count points by quadrants, used by ks2d1s

147 quadvl guadrant probabilities, used by ks2d1s

147 ks2d2s K-S test in two dimensions, data vs. data

14.8 savgol Savitzky-Golay smoothing coefficients

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

Computer Programs by Chapter and Section XXV

152
153
153
154
154
154
154
154
154
155
155
155
15.7
15.7

16.1
16.1
16.2
16.2
16.2
16.3
16.4
16.4
16.4
16.5
16.6
16.6
16.6
16.6
16.6

171
17.2
17.3
17.3
17.3
17.3
17.4
174
17.4
17.4

18.1
18.1
18.2
18.3
18.3

fit
fitexy
chixy
1fit
covsrt
svdfit
svdvar
fpoly
fleg
mrgmin
mrqgcof
fgauss
medfit
rofunc

rkd
rkdumb
rkqgs
rkck
odeint
mmid
bsstep
pzextr
rzextr
stoerm
stiff
jacobn
derivs
simpr
stifbs

shoot
shootf
solvde
bksub
pinvs
red
sfroid
difeq
sphoot
sphfpt

fred2

fredin
voltra
wwghts
kermom

least-squares fit data to a straight line

fit datato a straight line, errorsin both z and y

used by fitexy to calculate a x>

general linear least-squares fit by normal equations
rearrange covariance matrix, used by 1fit

linear least-squares fit by singular value decomposition
variances from singular value decomposition

fit a polynomial using 1fit or svdfit

fit a Legendre polynomial using1fit or svdfit
nonlinear least-squares fit, Marquardt’s method

used by mrqmin to evaluate coefficients

fit a sum of Gaussians using mrqmin

fit datato a straight line robustly, least absolute deviation
fit data robustly, used by medfit

integrate one step of ODEs, fourth-order Runge-Kutta
integrate ODEs by fourth-order Runge-Kutta
integrate one step of ODEs with accuracy monitoring
Cash-Karp-Runge-Kutta step used by rkqs

integrate ODES with accuracy monitoring

integrate ODEs by modified midpoint method
integrate ODES, Bulirsch-Stoer step

polynomial extrapolation, used by bsstep

rational function extrapolation, used by bsstep
integrate conservative second-order ODEs

integrate stiff ODES by fourth-order Rosenbrock
sample Jacobian routine for stiff

sample derivatives routine for stiff

integrate stiff ODES by semi-implicit midpoint rule
integrate stiff ODEs, Bulirsch-Stoer step

solve two point boundary value problem by shooting
ditto, by shooting to a fitting point

two point boundary value problem, solve by relaxation
backsubstitution, used by solvde

diagonalize a sub-block, used by solvde

reduce columns of a matrix, used by solvde
spheroidal functions by method of solvde

spheroidal matrix coefficients, used by sfroid
spheroidal functions by method of shoot

spheroidal functions by method of shootf

solve linear Fredholm equations of the second kind
interpolate solutions obtained with fred2

linear Volterra equations of the second kind
guadrature weights for an arbitrarily singular kernel
sample routine for moments of a singular kernel

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

XXVi Computer Programs by Chapter and Section

18.3 quadmx sample routine for a quadrature matrix

18.3 fredex example of solving a singular Fredholm equation
195 sor elliptic PDE solved by successive overrelaxation method
19.6 mglin linear elliptic PDE solved by multigrid method

19.6 rstrct half-weighting restriction, used by mglin, mgfas
19.6 interp bilinear prolongation, used by mglin, mgfas

19.6 addint interpolate and add, used by mglin

19.6 slvsml solve on coarsest grid, used by mglin

19.6 relax Gauss-Seidel relaxation, used by mglin

19.6 resid calculate residual, used by mglin

19.6 copy utility used by mglin, mgfas

19.6 £illo0 utility used by mglin

19.6 mgfas nonlinear elliptic PDE solved by multigrid method
19.6 relax2 Gauss-Seidel relaxation, used by mgfas

19.6 slvsm2 solve on coarsest grid, used by mgfas

19.6 lop applies nonlinear operator, used by mgfas

19.6 matadd utility used by mgfas

19.6 matsub utility used by mgfas

19.6 anorm?2 utility used by mgfas

20.1 machar diagnose computer’s floating arithmetic

20.2 igray Gray code and its inverse

20.3 icrel cyclic redundancy checksum, used by icrc

20.3 icrc cyclic redundancy checksum

20.3 decchk decimal check digit calculation or verification

204 hufmak construct a Huffman code

204 hufapp append bits to a Huffman code, used by hufmak

204 hufenc use Huffman code to encode and compress a character
204 hufdec use Huffman code to decode and decompress a character
205 arcmak construct an arithmetic code

205 arcode encode or decode a character using arithmetic coding
20.5 arcsum add integer to byte string, used by arcode

20.6 mpops multiple precision arithmetic, simpler operations
20.6 mpmul multiple precision multiply, using FFT methods

20.6 mpinv multiple precision reciprocal

20.6 mpdiv multiple precision divide and remainder

20.6 mpsqrt multiple precision square root

20.6 mp2dfr multiple precision conversion to decimal base

20.6 mppi multiple precision example, compute many digits of =

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

Chapter 1. Preliminaries

1.0 Introduction

This book, like its predecessor edition, is supposed to teach you methods of
numerical computing that are practical, efficient, and (insofar as possible) elegant.
We presume throughout this book that you, the reader, have particular tasks that you
want to get done. We view our job as educating you on how to proceed. Occasionally
we may try to reroute you briefly onto a particularly beautiful side road; but by and
large, we will guide you along main highways that lead to practical destinations.

Throughout this book, you will find us fearlessly editorializing, telling you
what you should and shouldn’t do. This prescriptive tone results from a conscious
decision on our part, and we hope that you will not find it irritating. We do not
claim that our advice is infalible! Rather, we are reacting against a tendency, in
the textbook literature of computation, to discuss every possible method that has
ever been invented, without ever offering a practical judgment on relative merit. We
do, therefore, offer you our practical judgments whenever we can. As you gain
experience, you will form your own opinion of how reliable our adviceis.

We presume that you are able to read computer programs in C, that being
the language of this version of Numerical Recipes (Second Edition). The book
Numerical Recipesin FORTRAN (Second Edition) is separately available, if you
prefer to program in that language. Earlier editions of Numerical Recipesin Pascal
and Numerical Recipes Routines and Examplesin BASC are also available; while
not containing the additional material of the Second Edition versions in C and
FORTRAN, these versions are perfectly serviceable if Pascal or BASIC is your
language of choice.

When we include programs in the text, they look like this:

#include <math.h>
#define RAD (3.14159265/180.0)

void flmoon(int n, int nph, long *jd, float *frac)
Our programs begin with an introductory comment summarizing their purpose and explaining
their calling sequence. This routine calculates the phases of the moon. Given an integer n and
a code nph for the phase desired (nph = 0 for new moon, 1 for first quarter, 2 for full, 3 for last
quarter), the routine returns the Julian Day Number jd, and the fractional part of a day frac
to be added to it, of the nth such phase since January, 1900. Greenwich Mean Time is assumed.
{

void nrerror(char error_text[]);

int i;

float am,as,c,t,t2,xtra;

c=n+nph/4.0; This is how we comment an individual
line.

‘(eauBWY YUON apisino) Bio abpugued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sq00q sadioay [ealswn 1apio 0] ‘pangiyold Apows si ‘1eindwod 1aaias Aue o} (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul 10} pajuelB si uoissiwiad

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

2 Chapter 1. Preliminaries

t=c/1236.85;

t2=tx*xt;

as=359.2242+29.105356%c; You aren't really intended to understand
am=306.0253+385.816918*c+0.010730*t2; this algorithm, but it does work!

*jd=2415020+28L*n+7L*nph;
xtra=0.75933+1.53058868*c+((1.178e-4)-(1.55e-7)*t)*t2;
if (nph == 0 || nph == 2)

xtra += (0.1734-3.93e-4*t)*sin(RAD*as)-0.4068*sin (RAD*am) ;
else if (nph == 1 || nph == 3)

xtra += (0.1721-4.0e-4*t)*sin(RAD*as)-0.6280*sin(RAD*am) ;

else nrerror("nph is unknown in flmoon"); This is how we will indicate error
i=(int) (xtra >= 0.0 ? floor(xtra) : ceil(xtra-1.0)); conditions.
*jd += i;

*frac=xtra-i;

If the syntax of the function definition above looks strange to you, then you are
probably used to the older Kernighan and Ritchie (“K&R") syntax, rather than that of
the newer ANSI C. Inthisedition, we adopt ANSI C asour standard. You might want
to look ahead to §1.2 where ANSI C function prototypesare discussed in more detail.

Note our conventionof handling all errorsand exceptional caseswith astatement
like nrerror ("some error message");. The function nrerror() is part of a
small file of utility programs, nrutil.c, listed in Appendix B at the back of the
book. ThisAppendix includesanumber of other utilitiesthat wewill describelater in
this chapter. Functionnrerror () printstheindicated error messageto your stderr
device (usually your terminal screen), and then invokes the function exit (), which
terminates execution. The function exit () isin every C library we know of; but if
you find it missing, you can modify nrerror () sothat it does anything else that will
halt execution. For example, you can have it pause for input from the keyboard, and
then manually interrupt execution. In some applications, you will want to modify
nrerror () to do more sophisticated error handling, for example to transfer control
somewhere else, with an error flag or error code set.

We will have more to say about the C programming language, its conventions
and style, in §1.1 and §1.2.

Computational Environment and Program Validation

Our godl is that the programs in this book be as portable as possible, across
different platforms (models of computer), across different operating systems, and
across different C compilers. C was designed with this type of portability in
mind. Nevertheless, we have found that there is no substitute for actually checking
all programs on a variety of compilers, in the process uncovering differences in
library structure or contents, and even occasional differencesin alowed syntax. As
surrogates for the large number of possible combinations, we have tested all the
programs in this book on the combinations of machines, operating systems, and
compilers shown on the accompanying table. More generally, the programs should
run without modification on any compiler that implements the ANSI C standard,
as described for example in Harbison and Steele€’s excellent book [1]. With small
modifications, our programs should run on any compiler that implements the older,
de facto K&R standard [2]. An example of the kind of trivial incompatibility to
watch out for is that ANSI C requires the memory allocation functions malloc ()

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

1.0 Introduction 3

Tested Machines and Compilers

Hardware O/S Version Compiler Version

IBM PC compatible 486/33 MS-DOS5.0/Windows 3.1 Microsoft C/C++ 7.0

IBM PC compatible 486/33 MS-DOS5.0 Borland C/C++ 2.0

IBM RS/6000 AlIX 3.2 IBM xlc 1.02

DECstation 5000/25 ULTRIX 4.2A CodeCenter (Saber) C3.1.1
DECsystem 5400 ULTRIX 4.1 GNU C Compiler 2.1

Sun SPARCstation 2 SunOS 4.1 GNU C Compiler 1.40
DECstation 5000/200 ULTRIX 4.2 DECRISC C 2.1*

Sun SPARCstation 2 SunOS 4.1 Sun cc 1.1*

*compiler version does not fully implement ANSI C; only K&R validated

and free () to be declared via the header std1ib.h; some older compilers require
them to be declared with the header file malloc.h, while others regard them as
inherent in the language and require no header file at all.

In validating the programs, we have taken the program source code directly
from the machine-readable form of the book’s manuscript, to decrease the chance
of propagating typographical errors. “Driver” or demonstration programs that we
used as part of our validations are available separately as the Numerical Recipes
Example Book (C), as well as in machine-readable form. If you plan to use more
than a few of the programsin this book, or if you plan to use programsin this book
on more than one different computer, then you may find it useful to obtain a copy
of these demonstration programs.

Of course we would be foolish to claim that there are no bugs in our programs,
and we do not make such a claim. We have been very careful, and have benefitted
from the experience of the many readers who have written to us. If you find a new
bug, please document it and tell us!

Compatibility with the First Edition

If you are accustomed to the Numerical Recipesroutinesof the First Edition, rest
assured: amost all of them are still here, with the same names and functionalities,
often with major improvements in the code itself. In addition, we hope that you
will soon become equally familiar with the added capabilities of the more than 100
routines that are new to this edition.

We have retired a small number of First Edition routines, those that we believe
to be clearly dominated by better methods implemented in this edition. A table,
following, lists the retired routines and suggests replacements.

First Edition users should aso be aware that some routines common to both
editions have dterations in their calling interfaces, so are not directly “plug compat-
ible” A fairly completelist is: chsone, chstwo, covsrt, dfpmin, laguer, 1fit,
memcof, mrqcof, mrgmin, pzextr, ran4, realft, rzextr, shoot, shootf. There
may be others (depending in part on which printing of the First Edition is taken
for the comparison). If you have written software of any appreciable complexity

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

4 Chapter 1. Preliminaries

Previous Routines Omitted from This Edition
Name(s) Replacement(s) Comment
adi mglin or mgfas better method
cosft cosftl or cosft2 choice of boundary conditions
cel, el2 rf,rd, rj, rc better algorithms
des, desks rand Now usespsdes wastoo slow
mdianl, mdian2 select, selip more general
qcksrt sort name change (sort iSNow hpsort)
rkqc rkgs better method
smooft use convlv with coefficients from savgol
sparse linbcg more genera

that is dependent on First Edition routines, we do not recommend blindly replacing
them by the corresponding routines in this book. We do recommend that any new
programming efforts use the new routines.

About References

You will find references, and suggestions for further reading, listed at the
end of most sections of this book. References are cited in the text by bracketed
numbers like this[3].

Because computer algorithms often circulate informally for quite some time
before appearing in a published form, the task of uncovering “primary literature”
is sometimes quite difficult. We have not attempted this, and we do not pretend
to any degree of bibliographical completeness in this book. For topics where a
substantial secondary literature exists (discussion in textbooks, reviews, etc.) we
have conscioudly limited our references to a few of the more useful secondary
sources, especially those with good references to the primary literature. Where the
existing secondary literature is insufficient, we give references to a few primary
sources that are intended to serve as starting points for further reading, not as
complete bibliographies for the field.

Theorderinwhichreferencesarelisted is not necessarily significant. Itreflectsa
compromisebetween listing cited referencesintheorder cited, and listing suggestions
for further reading in aroughly prioritized order, with the most useful ones first.

The remaining three sections of this chapter review some basic concepts of
programming (control structures, etc.), discuss a set of conventions specific to C
that we have adopted in this book, and introduce some fundamental concepts in
numerical analysis (roundoff error, etc.). Thereafter, we plunge into the substantive
material of the book.

CITED REFERENCES AND FURTHER READING:

Harbison, S.P., and Steele, G.L., Jr. 1991, C: A Reference Manual, 3rd ed. (Englewood Cliffs,
NJ: Prentice-Hall). [1]

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

1.1 Program Organization and Control Structures 5

Kernighan, B., and Ritchie, D. 1978, The C Programming Language (Englewood Cliffs, NJ:
Prentice-Hall). [2] [Reference for K&R “traditional” C. Later editions of this book conform
to the ANSI C standard.]

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell). [3]

1.1 Program Organization and Control
Structures

We sometimesliketo point out the close anal ogies between computer programs,
on the one hand, and written poetry or written musical scores, on the other. All
three present themselves as visual media, symbols on a two-dimensional page or
computer screen. Yet, in al three cases, the visual, two-dimensional, frozen-in-time
representation communicates (or is supposed to communicate) something rather
different, namely a process that unfoldsin time. A poem is meant to be read; music,
played; a program, executed as a sequential series of computer instructions.

Inall three cases, the target of the communication, initsvisual form, isahuman
being. The goal is to transfer to him/her, as efficiently as can be accomplished,
the greatest degree of understanding, in advance, of how the process will unfold in
time. In poetry, this human target is the reader. In music, it is the performer. In
programming, it is the program user.

Now, you may object that the target of communication of a program is not
a human but a computer, that the program user is only an irrelevant intermediary,
a lackey who feeds the machine. This is perhaps the case in the situation where
the business executive pops a diskette into a desktop computer and feeds that
computer a black-box program in binary executable form. The computer, in this
case, doesn't much care whether that program was written with “good programming
practice’ or not.

We envision, however, that you, the readers of this book, are in quite adifferent
situation. You need, or want, to know not just what a program does, but also how
it doesiit, so that you can tinker with it and modify it to your particular application.
You need others to be able to see what you have done, so that they can criticize or
admire. In such cases, where the desired goal is maintainable or reusable code, the
targets of a program’s communication are surely human, not machine.

One key to achieving good programming practice is to recognize that pro-
gramming, music, and poetry — al three being symbolic constructs of the human
brain — are naturally structured into hierarchies that have many different nested
levels. Sounds (phonemes) form small meaningful units (morphemes) which in turn
form words; words group into phrases, which group into sentences; sentences make
paragraphs, and these are organized into higher levels of meaning. Notes form
musical phrases, which form themes, counterpoints, harmonies, etc.; which form
movements, which form concertos, symphonies, and so on.

Thestructurein programsisequally hierarchical. Appropriately, good program-
ming practice brings different techniquesto bear on the different levels [1-3]. Atalow
level is the ascii character set. Then, constants, identifiers, operands, operators.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

6 Chapter 1. Preliminaries

Then program statements, like a[j+1]=b+c/3.0;. Here, the best programming
advice is simply be clear, or (correspondingly) don’t be too tricky. You might
momentarily be proud of yourself at writing the single line

k=(2-3)*(1+3%j)/2;

if you want to permute cyclically one of the values j = (0,1, 2) into respectively
k = (1,2,0). You will regret it later, however, when you try to understand that
line. Better, and likely also faster, is

k=j+1;
if (k == 3) k=0;

Many programming stylists would even argue for the ploddingly literal

switch (§) {
case 0: k=1; break;
case 1: k=2; break;
case 2: k=0; break;

default: {
fprintf (stderr, "unexpected value for j");
exit(1);

}

on the groundsthat it is both clear and additionally safeguarded from wrong assump-
tions about the possible values of j. Our preference among the implementations
is for the middle one.

In this smple example, we have in fact traversed several levels of hierarchy:
Statements frequently come in “groups’ or “blocks’ which make sense only taken
as awhole. The middle fragment above is one example. Another is

swap=al[jl;
aljl=bljl;
b[jl=swap;

which makes immediate sense to any programmer as the exchange of two variables,
while

ans=sum=0.0;
n=1;

isvery likely to be an initialization of variables prior to some iterative process. This
level of hierarchy in aprogramis usually evident to the eye. Itis good programming
practice to put in comments at thislevel, e.g., “initialize” or “exchange variables”

The next level is that of control structures. These are things like the switch
construction in the example above, for loops, and so on. This levd is sufficiently
important, and relevant to the hierarchical level of the routines in this book, that
we will come back to it just below.

At till higher levels in the hierarchy, we have functions and modules, and the
whole “global” organization of the computational task to be done. In the musical
analogy, we are now at the level of movementsand complete works. At theselevels,

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

1.1 Program Organization and Control Structures 7

modularization and encapsulation become important programming concepts, the
general idea being that program units should interact with one another only through
clearly defined and narrowly circumscribed interfaces. Good modul arization practice
is an essential prerequisite to the success of large, complicated software projects,
especially those employing the efforts of more than one programmer. It is also good
practice (if not quite as essential) in the less massive programming tasks that an
individual scientist, or reader of this book, encounters.

Some computer languages, such as Modula-2 and C++, promote good modul ar-
ization with higher-level language constructs absent in C. In Modula-2, for example,
functions, type definitions, and data structures can be encapsulated into “modules”
that communicate through declared public interfaces and whose internal workings
are hidden from the rest of the program [4]. In the C++ language, the key concept
is“class,” auser-definable generalization of data type that provides for data hiding,
automatic initialization of data, memory management, dynamic typing, and operator
overloading (i.e., the user-definable extension of operators like + and * so asto be
appropriateto operandsin any particular class) [5]. Properly used in defining the data
structuresthat are passed between programunits, classes can clarify and circumscribe
these units' public interfaces, reducing the chances of programming error and also
allowing a considerable degree of compile-time and run-time error checking.

Beyond modularization, though depending on it, lie the concepts of object-
oriented programming. Here a programming language, such as C++ or Turbo Pascal
5.516], allows amodule's public interface to accept redefinitions of types or actions,
and these redefinitions become shared all the way down through the module’s
hierarchy (so-called polymorphism). For example, aroutinewritten to invert amatrix
of real numberscould — dynamically, at run time— be made able to handle complex
numbers by overloading complex data types and corresponding definitions of the
arithmetic operations. Additional concepts of inheritance (the ability to define adata
type that “inherits’ all the structure of another type, plus additional structure of its
own), and object extensibility (the ability to add functionality to a module without
access to its source code, e.g., a run time), also come into play.

We have not attempted to modul arize, or make objects out of, theroutinesin this
book, for at least two reasons. First, the chosen language, C, does not really make
this possible. Second, we envision that you, the reader, might want to incorporate
the algorithms in this book, afew at atime, into modules or objects with a structure
of your own choosing. There does not exist, at present, a standard or accepted set
of “classes’ for scientific object-oriented computing. While we might have tried to
invent such a set, doing so would have inevitably tied the algorithmic content of the
book (whichisitsraison d’ &tre) to some rather specific, and perhaps haphazard, set
of choices regarding class definitions.

On the other hand, we are not unfriendly to the goals of modular and object-
oriented programming. Within the limits of C, we have therefore tried to structure
our programs to be “object friendly.” That is one reason we have adopted ANSI
C with its function prototyping as our default C dialect (see §1.2). Also, within
our implementation sections, we have paid particular attention to the practices of
structured programming, as we now discuss.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

8 Chapter 1. Preliminaries

Control Structures

An executing program unfolds in time, but not strictly in the linear order in
which the statements are written. Program statements that affect the order in which
statements are executed, or that affect whether statements are executed, are called
control statements. Control statements never make useful sense by themselves. They
make sense only in the context of the groups or blocks of statementsthat they in turn
control. If you think of those blocks as paragraphs containing sentences, then the
control statements are perhaps best thought of as the indentation of the paragraph
and the punctuation between the sentences, not the words within the sentences.

We can now say what the goal of structured programming is. It is to make
program control manifestly apparent in the visual presentation of the program. You
see that this goal has nothing at all to do with how the computer sees the program.
Asaready remarked, computersdon’t care whether you use structured programming
or not. Human readers, however, do care. You yourself will also care, once you
discover how much easier it is to perfect and debug a well-structured program than
one whose control structure is obscure.

You accomplish the goals of structured programming in two complementary
ways. First, you acquaint yourself with the small number of essential control
structures that occur over and over again in programming, and that are therefore
given convenient representationsin most programming languages. You should learn
to think about your programming tasks, insofar as possible, exclusively in terms of
these standard control structures. In writing programs, you should get into the habit
of representing these standard control structuresin consistent, conventional ways.

“Doesn’'t this inhibit creativity?” our students sometimes ask. Yes, just
as Mozart's creativity was inhibited by the sonata form, or Shakespeare's by the
metrical requirements of the sonnet. The point is that creativity, when it is meant to
communicate, does well under the inhibitions of appropriate restrictions on format.

Second, you avoid, insofar as possible, control statements whose controlled
blocks or objects are difficult to discern at aglance. This means, in practice, that you
must try to avoid named labels on statements and goto’s. It is not the goto’s that
are dangerous (although they do interrupt on€e's reading of a program); the named
statement |abels are the hazard. In fact, whenever you encounter a named statement
label while reading a program, you will soon become conditioned to get a sinking
feeling in the pit of your stomach. Why? Because the following questions will, by
habit, immediately spring to mind: Where did control come fromin a branch to this
label ? 1t could be anywhere in the routine! What circumstances resulted in a branch
tothislabel? They could be anything! Certainty becomes uncertainty, understanding
dissolves into a morass of possibilities.

Some examples are now in order to make these considerations more concrete
(see Figure 1.1.2).

Catalog of Standard Structures

Iteration. InC, simpleiteration is performed with a for loop, for example

for (j=2;3j<=1000;j++) {
bljl=alj-11;
alj-11=j;

}

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

1.1 Program Organization and Control Structures

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)

Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software.

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-
readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website
http://www.nr.com or call 1-800-872-7423 (North America only), or send email to directcustserv@cambridge.org (outside North America).

c

& S

c B B

0.9 x o} x x T
= Q 5 = > Q Q > =
£g o > w2 > o o > v 2

25 = o~ = =

: = 3

2 A &

c

°

£ IS A g

x m ® X~ o =

&} & % = p=
e} S-S = S S ==

£ m-u“) I

s A =

(@)

\ 4 (a)

Figure 1.1.1. Standard control structures used in structured programming: (@) for iteration; (b) while

iteration; (c) do while iteration; (d) break iteration; (e) if structure; (f) switch structure

Preliminaries

Chapter 1.

10

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)

Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software.

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-
readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website
http://www.nr.com or call 1-800-872-7423 (North America only), or send email to directcustserv@cambridge.org (outside North America).

y
else block
i

5 o = =
= S L
5
S S
5 o) x Q. e % Q 2
8 8 8 8 -- >
2 5 ° 5
o
5 X
- B c &}
- 22 |57 =
: G'7 5
.a. |H.M = P>
L M%. 3
D
S
c
= O x~
= Q
85 S P
o) o)
8

if
condition
block
Y
Y

SWITCH structure

()

Figure1.1.1. Standard control structures used in structured programming (see caption on previous page).

1.1 Program Organization and Control Structures 11

Notice how we always indent the block of code that is acted upon by the control
structure, leaving the structure itself unindented. Notice also our habit of putting the
initial curly brace on the same line as the for statement, instead of on the next line.
This saves a full line of white space, and our publisher loves us for it.

IF structure. Thisstructurein C is similar to that found in Pascal, Algol,
FORTRAN and other languages, and typically looks like

if (...) {

}
else if (...) {

}
else {

}

Since compound-statement curly braces are required only when there is more
than one statement in a block, however, C's i construction can be somewhat less
explicit than the corresponding structurein FORTRAN or Pascal. Some care must be
exercised in constructing nested if clauses. For example, consider the following:

if (b > 3)
if (a > 3) b += 1;
else b -= 1; /* questionable! */

As judged by the indentation used on successive lines, the intent of the writer of
this code is the following: ‘If b is greater than 3 and a is greater than 3, then
increment b. If b is not greater than 3, then decrement b’ According to the rules
of C, however, the actual meaning is ‘If b is greater than 3, then evaluate a. If ais
greater than 3, thenincrement b, and if aisless than or equal to 3, decrement b’ The
point is that an else clause is associated with the most recent open if statement,
no matter how you lay it out on the page. Such confusions in meaning are easily
resolved by the inclusion of braces. They may in some instances be technically
superfluous; nevertheless, they clarify your intent and improve the program. The
above fragment should be written as

if (b > 3) {

if (a > 3) b += 1;
} else {

b -=1;
}

Here is aworking program that consists dominantly of if control statements:

#include <math.h>
#define IGREG (15+31L*(10+12L*1582)) Gregorian Calendar adopted Oct. 15, 1582.

long julday(int mm, int id, int iyyy)

In this routine julday returns the Julian Day Number that begins at noon of the calendar date
specified by month mm, day id, and year iyyy, all integer variables. Positive year signifies A.D.;
negative, B.C. Remember that the year after 1 B.C. was 1 A.D.

{

void nrerror(char error_text[]);

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

12 Chapter 1. Preliminaries

long jul;
int ja,jy=iyyy,jm;

if (jy == 0) nrerror("julday: there is no year zero.");

if (Jy < 0) ++jy;

if (mm > 2) { Here is an example of a block IF-structure.
jm=mm+1;

} else {
-=3y;
jm=mm+13;

¥

jul = (long) (floor(365.25*jy)+floor(30.6001*jm)+id+1720995) ;

if (id+31L* (mm+12L*iyyy) >= IGREG) { Test whether to change to Gregorian Cal-
ja=(int) (0.01%jy); endar.

jul += 2-ja+(int) (0.25%ja);
}

return jul;

(Astronomers number each 24-hour period, starting and ending at noon, with
a unique integer, the Julian Day Number [7]. Julian Day Zero was a very long
time ago; a convenient reference point is that Julian Day 2440000 began at noon
of May 23, 1968. If you know the Julian Day Number that begins at noon of a
given calendar date, then the day of the week of that date is obtained by adding
1 and taking the result modulo base 7; a zero answer corresponds to Sunday, 1 to
Monday, ..., 6 to Saturday.)

Whileiteration. Most languages (though not FORTRAN, incidentally) provide
for structures like the following C example:

while (n < 1000) {
n x= 2;
j+=1;

It is the particular feature of this structure that the control-clause (in this case
n < 1000) is evaluated before each iteration. If the clauseis not true, the enclosed
statements will not be executed. In particular, if this code is encountered at a time
whenn isgreater than or equal to 1000, the statementswill not even be executed once.

Do-Whileiteration. Companion to the while iteration is arelated control-
structure that tests its control-clause at the end of each iteration. In C, it looks
like this:

do {
n *x= 2;
j+=1
} while (n < 1000);

In this case, the enclosed statements will be executed at least once, independent
of the initial value of n.

Break. Inthis case, you have aloop that is repeated indefinitely until some
condition tested somewhere in the middle of the loop (and possibly tested in more

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

1.1 Program Organization and Control Structures 13

than one place) becomes true. At that point you wish to exit the loop and proceed
with what comes after it. In C the structure is implemented with the simple break
statement, which terminates execution of the innermost for, while, do, Or switch
construction and proceedsto the next sequential instruction. (InPascal and standard
FORTRADN, this structure requires the use of statement labels, to the detriment of clear
programming.) A typical usage of the break statement is:

for(;;) {
[statements before the test]
if (...) break;
[statements after the test]
}

[next sequential instruction]

Hereis aprogram that uses several different iteration structures. One of uswas
once asked, for a scavenger hunt, to find the date of a Friday the 13th on which the
moon was full. Thisis a program which accomplishes that task, giving incidentally
all other Fridays the 13th as a by-product.

#include <stdio.h>

#include <math.h>

#define ZON -5.0 Time zone —5 is Eastern Standard Time.
#define IYBEG 1900 The range of dates to be searched.
#define IYEND 2000

int main(void) /* Program badluk */
{
void flmoon(int n, int nph, long *jd, float *frac);
long julday(int mm, int id, int iyyy);
int ic,icon,idwk,im,iyyy,n;
float timzon = ZON/24.0,frac;
long jd,jday;

printf ("\nFull moons on Friday the 13th from %5d to %5d\n",IYBEG,IYEND);
for (iyyy=IYBEG;iyyy<=IYEND;iyyy++) { Loop over each year,
for (im=1;im<=12;im++) { and each month.
jday=julday(im,13,iyyy); Is the 13th a Friday?
idwk=(int) ((jday+1) % 7);
if (idwk == 5) {
n=(int) (12.37* (iyyy-1900+(im-0.5)/12.0));
This value n is a first approximation to how many full moons have occurred
since 1900. We will feed it into the phase routine and adjust it up or down
until we determine that our desired 13th was or was not a full moon. The
variable icon signals the direction of adjustment.

icon=0;
for (5;) {
flmoon(n,2,&jd,&frac); Get date of full moon n.
frac=24.0*(frac+timzon); Convert to hours in correct time zone.
if (frac < 0.0) { Convert from Julian Days beginning at
--jd; noon to civil days beginning at mid-
frac += 24.0; night.
}
if (frac > 12.0) {
++jd;
frac -= 12.0;
} else
frac += 12.0;
if (jd == jday) { Did we hit our target day?

printf ("\n%2d/13/%4d\n",im, iyyy) ;
printf("%s %5.1f %s\n","Full moon",frac,

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

14 Chapter 1. Preliminaries

" hrs after midnight (EST)");

break; Part of the break-structure, a match.
} else { Didn't hit it.
ic=(jday >= jd 7 1 : -1);
if (ic == (-icon)) break; Another break, case of no match.
icon=ic;
n += ic;
}
}
}
}
}
return O;

If you are merely curious, there were (or will be) occurrences of a full moon
on Friday the 13th (time zone GMT—5) on: 3/13/1903, 10/13/1905, 6/13/1919,
1/13/1922, 11/13/1970, 2/13/1987, 10/13/2000, 9/13/2019, and 8/13/2049.

Other “standard” structures. Our advice is to avoid them. Every pro-
gramming language has some number of “goodies’ that the designer just couldn’t
resist throwing in. They seemed like a good idea at the time. Unfortunately they
don’t stand the test of time! Your program becomes difficult to trandate into other
languages, and difficult to read (because rarely used structures are unfamiliar to the
reader). You can amost always accomplish the supposed conveniences of these
structures in other ways.

In C, the most problematic control structure is the switch...case...default
construction (see Figure 1.1.1), which has historically been burdened by uncertainty,
from compiler to compiler, about what datatypesarealowedinitscontrol expression.
Datatypes char and int are universally supported. For other datatypes, e.g., float
or double, the structure should be replaced by a more recognizable and translatable
if...else construction. ANSI C alows the control expression to be of type long,
but many older compilers do not.

The continue; construction, while benign, can generally be replaced by an
if construction with no loss of clarity.

About “Advanced Topics”

Material set in smaller type, like this, signals an “advanced topic,” either one outside of
the main argument of the chapter, or else one requiring of you more than the usual assumed
mathematical background, or else (in afew cases) a discussion that is more speculative or an
algorithm that is less well-tested. Nothing important will be lost if you skip the advanced
topics on a first reading of the book.

You may have noticed that, by itslooping over the months and years, the program badluk
avoids using any algorithm for converting a Julian Day Number back into a calendar date. A
routine for doing just thisis not very interesting structurally, but it is occasionally useful:

#include <math.h>
#define IGREG 2299161

void caldat(long julian, int *mm, int *id, int *iyyy)
Inverse of the function julday given above. Here julian is input as a Julian Day Number,
and the routine outputs mm,id, and iyyy as the month, day, and year on which the specified
Julian Day started at noon.
{

long ja,jalpha, jb,jc,jd,je;

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

1.2 Some C Conventions for Scientific Computing 15

if (julian >= IGREG) { Cross-over to Gregorian Calendar produces this correc-
jalpha=(long) (((double) (julian-1867216)-0.25)/36524.25); tion.
ja=julian+1i+jalpha-(long) (0.25%jalpha);

} else if (julian < 0) { Make day number positive by adding integer number of

ja=julian+36525*(1-julian/36525) ; Julian centuries, then subtract them off
} else at the end.

ja=julian;
jb=ja+1524;

jc=(1long) (6680.0+((double) (jb-2439870)-122.1)/365.25);
jd=(1long) (365%jc+(0.25%jc)) ;

je=(1long) ((jb-3jd)/30.6001);

*id=jb-jd-(long) (30.6001*je);

*mm=je-1;

if (vmm > 12) *mm -= 12;

*iyyy=jc-4715;

if (kmm > 2) --(xiyyy);

if (xiyyy <= 0) --(xiyyy);

if (julian < 0) *iyyy -= 100%(1-julian/36525);

(For additional calendrical algorithms, applicable to various historical calendars, see(8].)

CITED REFERENCES AND FURTHER READING:

Harbison, S.P., and Steele, G.L., Jr. 1991, C: A Reference Manual, 3rd ed. (Englewood Cliffs,
NJ: Prentice-Hall).

Kernighan, B.W. 1978, The Elements of Programming Style (New York: McGraw-Hill). [1]

Yourdon, E. 1975, Techniques of Program Structure and Design (Englewood Cliffs, NJ: Prentice-
Hall). [2]

Jones, R., and Stewart, |. 1987, The Art of C Programming (New York: Springer-Verlag). [3]

Hoare, C.A.R. 1981, Communications of the ACM, vol. 24, pp. 75-83.

Wirth, N. 1983, Programming in Modula-2, 3rd ed. (New York: Springer-Verlag). [4]

Stroustrup, B. 1986, The C++ Programming Language (Reading, MA: Addison-Wesley). [5]

Borland International, Inc. 1989, Turbo Pascal 5.5 Object-Oriented Programming Guide (Scotts
Valley, CA: Borland International). [6]

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell). [7]

Hatcher, D.A. 1984, Quarterly Journal of the Royal Astronomical Society, vol. 25, pp. 53-55; see
also op. cit. 1985, vol. 26, pp. 151-155, and 1986, vol. 27, pp. 506-507. [8]

1.2 Some C Conventions for Scientific
Computing

The C language was devised originally for systems programming work, not for
scientific computing. Relative to other high-level programming languages, C puts
the programmer “very close to the machine” in several respects. It is operator-rich,
giving direct access to most capabilities of a machine-language instruction set. It
has a large variety of intrinsic data types (short and long, signed and unsigned
integers; floating and double-precision reas; pointer types,; etc.), and a concise
syntax for effecting conversionsand indirections. It defines an arithmetic on pointers
(addresses) that relates gracefully to array addressing and is highly compatible with
the index register structure of many computers.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

16 Chapter 1. Preliminaries

Portability has always been another strong point of the C language. C is the
underlying language of the UNIX operating system; both the language and the
operating system have by now been implemented on literally hundreds of different
computers. The language’s universality, portability, and flexibility have attracted
increasing numbers of scientists and engineers to it. It is commonly used for the
real-time control of experimental hardware, often in spite of the fact that the standard
UNIX kernel is less than ideal as an operating system for this purpose.

The use of C for higher level scientific calculations such as data analysis,
modeling, and floating-point numerical work hasgenerally been slower in developing.
In part this is due to the entrenched position of FORTRAN as the mother-tongue of
virtually al scientists and engineers born before 1960, and most born after. In
part, also, the slowness of C’s penetration into scientific computing has been due to
deficienciesin the language that computer scientists have been (wethink, stubbornly)
slow to recognize. Examples are the lack of a good way to raise numbers to small
integer powers, and the “implicit conversion of f1oat to double” issue, discussed
below. Many, though not all, of these deficiencies are overcome in the ANSI C
Standard. Some remaining deficiencies will undoubtedly disappear over time.

Yet another inhibition to the mass conversion of scientiststo the C cult has been,
up to the time of writing, the decided lack of high-quality scientific or numerical
libraries. That is the lacunainto which we thrust this edition of Numerical Recipes.
We certainly do not claim to be a complete solution to the problem. We do hope
to inspire further efforts, and to lay out by example a set of sensible, practical
conventions for scientific C programming.

The need for programming conventionsin C isvery great. Far from the problem
of overcoming constraints imposed by the language (our repeated experience with
Pascal), the problem in C is to choose the best and most natural techniques from
multiple opportunities — and then to use those techniques completely consistently
from program to program. In the rest of this section, we set out some of the issues,
and describe the adopted conventionsthat are used in al of the routines in this book.

Function Prototypes and Header Files

ANSI C alows functionsto be defined with function prototypes, which specify
the type of each function parameter. If a function declaration or definition with
a prototype is visible, the compiler can check that a given function call invokes
the function with the correct argument types. All the routines printed in this book
are in ANSI C prototype form. For the benefit of readers with older “traditional
K&R” C compilers, the Numerical Recipes C Diskette includes two complete sets of
programs, one in ANSI, the other in K&R.

The easiest way to understand prototypesis by example. A function definition
that would be written in traditional C as

int g(x,y,z)
int x,y;
float z;

becomes in ANSI C

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

1.2 Some C Conventions for Scientific Computing 17

int g(int x, int y, float z)

A function that has no parameters has the parameter type list void.

A function declaration (as contrasted to a function definition) is used to
“introduce” afunction to aroutine that is going to call it. The calling routine needs
to know the number and type of arguments and the type of the returned value. In
a function declaration, you are allowed to omit the parameter names. Thus the
declaration for the above function is allowed to be written

int g(int, int, float);

If aC program consists of multiple source files, the compiler cannot check the
consistency of each function call without some additional assistance. The safest
way to proceed is as follows:

e Every external function should have a single prototype declaration in a
header (.h) file.

e The source file with the definition (body) of the function should aso
include the header file so that the compiler can check that the prototypes
in the declaration and the definition match.

e Every source file that calls the function should include the appropriate
header (.1h) file.

e Optionally, a routine that calls a function can also include that function’s
prototype declaration internally. This is often useful when you are
developing a program, since it gives you a visible reminder (checked by
the compiler through the common . h file) of afunction’s argument types.
Later, after your program is debugged, you can go back and delete the
supernumary internal declarations.

For the routines in this book, the header file containing all the prototypesisnr.h,
listed in Appendix A. You should put the statement #include nr.h at the top of
every source file that contains Numerical Recipes routines. Since, more frequently
than not, you will want to include more than one Numerical Recipes routine in a
single source file, we have not printed this #include statement in front of this
book’s individual program listings, but you should make sure that it is present in
your programs.

As backup, and in accordance with the last item on the indented list above,
we declare the function prototype of al Numerical Recipes routines that are called
by other Numerical Recipes routines internally to the calling routine. (That also
makes our routines much more readable.) The only exception to this rule is that
the small number of utility routines that we use repeatedly (described below) are
declared in the additional header filenrutil.h, and theline #include nrutil.h
is explicitly printed whenever it is needed.

A final important point about the header file nr.h is that, as furnished on
the diskette, it contains both ANSI C and traditional K& R-style declarations. The
ANSI forms are invoked if any of the following macros are defined: __STDC__,
ANSI, or NRANSI. (The purpose of the last name is to give you an invocation that
does not conflict with other possible uses of the first two names.) If you have an
ANSI compiler, it is essential that you invoke it with one or more of these macros

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

18 Chapter 1. Preliminaries

defined. The typical means for doing so is to include a switch like “~DANSI” on
the compiler command line.
Some further details about the file nr . h are given in Appendix A.

Vectors and One-Dimensional Arrays

Thereisaclose, and elegant, correspondencein C between pointers and arrays.
The value referenced by an expression like a[j] is defined to be *((a)+(j)),
that is, “the contents of the address obtained by incrementing the pointer a by
j.” A consequence of this definition is that if a points to a legal data location,
the array element a[0] is aways defined. Arraysin C are natively “zero-origin”
or “zero-offset” An array declared by the statement float b[4]; has the valid
references b [0], b[1], b[2], and b[3], but not b [4].

Right away we need a notation to indicate what is the valid range of an array
index. (The issue comes up about a thousand times in this book!) For the above
example, the index range of b will be henceforth denoted b[0. .3], a notation
borrowed from Pascal. In general, the range of an array declared by float
a[M];isal0..M — 1], and the sameif £1loat isreplaced by any other datatype.

One problem is that many agorithms naturaly like to go from 1 to M, not
from0to M — 1. Sure, you can always convert them, but they then often acquire
a baggage of additional arithmetic in array indices that is, at best, distracting. It is
better to use the power of the C language, in a consistent way, to make the problem
disappear. Consider

float b[4],*bb;
bb=b-1;

The pointer bb now points one location beforeb. Animmediate consequenceis that
the array elements bb [1], bb[2], bb[3], and bb [4] al exist. In other words the
range of bbisbb[1..4]. We will refer to bb as a unit-offset vector. (See Appendix
B for some additional discussion of technical details.)

It is sometimes convenient to use zero-offset vectors, and sometimes convenient
to use unit-offset vectors in algorithms. The choice should be whichever is most
natural to the problem at hand. For example, the coefficients of a polynomial
ag + a1z + asx® + ... + apz™ clearly cry out for the zero-offset a[0. .n], while
avector of N datapointsx;, i = 1... N calsfor aunit-offset x[1..N]. When a
routine in this book has an array as an argument, its header comment always gives
the expected index range. For example,

void someroutine(float bb[], int nn)
This routine does something with the vector bb[1..nn].

Now, suppose you want someroutine () to do its thing on your own vector,
of length 7, say. If your vector, call it aa, is already unit-offset (has the valid range
aa[1..7]), thenyou caninvoke someroutine (aa,7) ; intheobviousway. Thatis
the recommended procedure, since someroutine () presumably has some logical,
or at least aesthetic, reason for wanting a unit-offset vector.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

1.2 Some C Conventions for Scientific Computing 19

But suppose that your vector of length 7, now call it a, is perversely anative C,
zero-offset array (hasrange a [0. . 6]). Perhapsthisisthe case because you disagree
with our aesthetic prejudices, Heaven help you! To use our recipe, do you have to
copy a’s contents element by element into another, unit-offset vector? No! Do you
have to declare a new pointer aaa and set it equal to a-1? No! You simply invoke
someroutine(a-1,7);. Then a[1], as seen from within our recipe, is actually
a[0] as seen from your program. In other words, you can change conventions “on
the fly” with just a couple of keystrokes.

Forgive us for belaboring these points. We want to free you from the zero-offset
thinking that C encourages but (as we see) does not require. A final liberating point
is that the utility file nrutil.c, listed in full in Appendix B, includes functions
for alocating (using malloc()) arbitrary-offset vectors of arbitrary lengths. The
synopses of these functions are as follows:

float *vector(long nl, long nh)
Allocates a float vector with range [nl..nh].

int *ivector(long nl, long nh)
Allocates an int vector with range [nl..nh].

unsigned char *cvector(long nl, long nh)
Allocates an unsigned char vector with range [nl..nh].

unsigned long *1lvector(long nl, long nh)
Allocates an unsigned long vector with range [nl..nh].

double *dvector(long nl, long nh)
Allocates a double vector with range [nl..nh].

A typical use of the above utilities is the declaration f1oat #*b; followed by
b=vector(1,7);, which makestherangeb[1..7] comeinto existence and allows
b to be passed to any function calling for a unit-offset vector.

Thefilenrutil. c aso contains the corresponding deallocation routines,

void free_vector(float #*v, long nl, long nh)
void free_ivector(int *v, long nl, long nh)
void free_cvector(unsigned char *v, long nl, long nh)
void free_lvector(unsigned long *v, long nl, long nh)
void free_dvector(double *v, long nl, long nh)

with the typical use being free_vector(b,1,7);.

Our recipes use the above utilities extensively for the all ocation and deall ocation
of vector workspace. We also commend them to you for usein your main programsor
other procedures. Note that if you want to allocate vectors of length longer than 64k
on an IBM PC-compatible computer, you should replace al occurrences of malloc

innrutil.c by your compiler’s special-purpose memory allocation function. This
applies also to matrix alocation, to be discussed next.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

20 Chapter 1. Preliminaries

Matrices and Two-Dimensional Arrays

The zero- versus unit-offset issue arises here, too. Let us, however, defer it for
amoment in favor of an even more fundamental matter, that of variable dimension
arrays (FORTRAN terminology) or conformant arrays (Pascal terminology). These
are arrays that need to be passed to a function along with real-time information
about their two-dimensional size. The systems programmer rarely deals with two-
dimensional arrays, and almost never deals with two-dimensional arrays whose size
is variable and known only at run time. Such arrays are, however, the bread and
butter of scientific computing. Imaginetrying to live with amatrix inversion routine
that could work with only one size of matrix!

Thereis no technical reason that a C compiler could not allow a syntax like

void someroutine(a,m,n)
float alm][n]; /* ILLEGAL DECLARATION */

and emit codeto eval uate the variable dimensionsm and n (or any variable-dimension
expression) each time someroutine() is entered. Alas! the above fragment is
forbidden by the C language definition. The implementation of variable dimensions
in C instead requires some additional finesse; however, we will see that one is
rewarded for the effort.

There is a subtle near-ambiguity in the C syntax for two-dimensional array
references. Let us elucidate it, and then turn it to our advantage. Consider the
array reference to a (say) float value a[i] [j], where i and j are expressions
that evaluate to type int. A C compiler will emit quite different machine code for
this reference, depending on how the identifier a has been declared. If a has been
declared as afixed-size array, e.g., float a[5] [9] ;, then the machine codeis: “to
the address a add 9times 1, then add j, return the value thus addressed.” Notice that
the constant 9 needs to be known in order to effect the calculation, and an integer
multiplication is required (see Figure 1.2.1).

Suppose, on the other hand, that a has been declared by float **a;. Then
the machine code for a[i] [j] is: “to the address of a add i, take the value thus
addressed as a new address, add j to it, return the value addressed by this new
address” Notice that the underlying size of a[] [] does not enter this calculation
at all, and that there is no multiplication; an additional indirection replaces it. We
thus have, in general, afaster and more versatile scheme than the previous one. The
price that we pay is the storage requirement for one array of pointers (to the rows
of a[] []), and the slight inconvenience of remembering to initialize those pointers
when we declare an array.

Hereis our bottom line: We avoid the fixed-size two-dimensional arraysof C as
being unsuitable data structuresfor representing matricesin scientific computing. We
adopt instead the convention “pointer to array of pointers,” with the array elements
pointing to the first element in the rows of each matrix. Figure 1.2.1 contrasts the
rejected and adopted schemes.

The following fragment shows how a fixed-size array a of size 13 by 9 is
converted to a “pointer to array of pointers’ reference aa:

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

1.2 Some C Conventions for Scientific Computing 21

---------- A[101 [0 Hrol 1] {0l [2] ol (3] [0l [4]

(11001 U0 /U021 qUil03] Hi1l[4] A

—[2][0] Hl21[1] Hl21[2] Hi2][3] (Hl2][4]

@

rmemmx {0 (- JJ01[0] HIOI[1] IOl [2] [O1[3] RIOI[4]
i1 Loy i {2l i3] g4l -

) m2l | 2ol |i2i mia2ii2] |2l i3] 2l 4]

Figure 1.2.1. Two storage schemes for a matrix m. Dotted lines denote address reference, while solid
lines connect sequential memory locations. (a) Pointer to afixed size two-dimensional array. (b) Pointer
to an array of pointers to rows; this is the scheme adopted in this book.

float a[13][9],**aa;

int i;
aa=(float **) malloc((unsigned) 13*sizeof(float*));
for(i=0;i<=12;i++) aalil=alil; a[i] is a pointer to a[i] [0]

Theidentifier aa is now amatrix with index rangeaa[0. .12] [0..8]. You can use
or modify its elements ad lib, and more importantly you can pass it as an argument
to any function by its name aa. That function, which declares the corresponding
dummy argument as float **aa;, can addressits elements as aa[i] [j] without
knowing its physical size.

You may rightly not wish to clutter your programs with code like the above
fragment. Also, there is still the outstanding problem of how to treat unit-offset
indices, so that (for example) the above matrix aa could be addressed with the range
al1..13][1..9]. Both of these problems are solved by additional utility routines
in nrutil.c (Appendix B) which allocate and deallocate matrices of arbitrary
range. The synopses are

float **matrix(long nrl, long nrh, long ncl, long nch)
Allocates a float matrix with range [nrl..nrh] [ncl..nch].

double **dmatrix(long nrl, long nrh, long ncl, long nch)
Allocates a double matrix with range [nrl..nrh] [ncl..nch].

int **imatrix(long nrl, long nrh, long ncl, long nch)
Allocates an int matrix with range [nrl..nrh] [ncl..nch].

void free_matrix(float **m, long nrl, long nrh, long ncl, long nch)
Frees a matrix allocated with matrix.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

22 Chapter 1. Preliminaries

void free_dmatrix(double *#*m, long nrl, long nrh, long ncl, long nch)
Frees a matrix allocated with dmatrix.

void free_imatrix(int #**m, long nrl, long nrh, long ncl, long nch)
Frees a matrix allocated with imatrix.

A typica use is

float *x*a;
a=matrix(1,13,1,9);

al3][51=. ..
...+a[2][9]/3.0...
someroutine(a,...);

free_matrix(a,1,13,1,9);

All matrices in Numerical Recipes are handled with the above paradigm, and we
commend it to you.

Some further utilities for handling matrices are also included in nrutil.c.
The first is a function submatrix () that sets up a new pointer reference to an
already-existing matrix (or sub-block thereof), along with new offsets if desired.
Its synopsis is

float **submatrix(float **a, long oldrl, long oldrh, long oldcl,

long oldch, long newrl, long newcl)
Point a submatrix [newrl..newrl+(oldrh-oldrl)] [newcl..newcl+(oldch-oldcl)] to
the existing matrix range aloldrl..oldrh] [oldcl..oldch].

Here oldrl and oldrh are respectively the lower and upper row indices of the
original matrix that are to be represented by the new matrix, oldcl and oldch are
the corresponding column indices, and newrl and newcl are the lower row and
column indices for the new matrix. (We don’t need upper row and column indices,
since they are implied by the quantities already given.)

Two sample uses might be, first, to select as a 2 x 2 submatrix b[1..2]
[1..2] someinterior range of an existing matrix, say a[4..5] [2..3],

float **a,**b;
a=matrix(1,13,1,9);

b=submatrix(a,4,5,2,3,1,1);

and second, to map an existing matrix al1..13][1..9] into a new matrix
b[0..12][0..8],

float **a,**b;
a=matrix(1,13,1,9);

b=submatrix(a,1,13,1,9,0,0);

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

1.2 Some C Conventions for Scientific Computing 23

Incidentally, you can use submatrix () for matrices of any type whose sizeof ()
isthesame as sizeof (f1loat) (often truefor int, e.9.); just cast the first argument
to type float ** and cast the result to the desired type, e.g., int *x*.

The function

void free_submatrix(float #*xb, long nrl, long nrh, long ncl, long nch)

freesthe array of row-pointersallocated by submatrix (). Notethat it does not free
the memory allocated to the data in the submatrix, since that space still lies within
the memory allocation of some original matrix.

Finally, if you have a standard C matrix declared as a [nrow] [ncol], and you
want to convert it into a matrix declared in our pointer-to-row-of-pointers manner,
the following function does the trick:

float **convert_matrix(float *a, long nrl, long nrh, long ncl, long nch)
Allocate a float matrix m[nrl. .nrh] [ncl..nch] that points to the matrix declared in the
standard C manner as a[nrow] [ncol], where nrow=nrh-nrl+1 and ncol=nch-ncl+1. The
routine should be called with the address &a[0] [0] as the first argument.

(You can use this function when you want to make use of C’s initializer syntax
to set values for a matrix, but then be able to pass the matrix to programs in this
book.) The function

void free_convert_matrix(float **b, long nrl, long nrh, long ncl, long nch)
Free a matrix allocated by convert_matrix().

frees the allocation, without affecting the original matrix a.

The only examples of alocating a three-dimensional array as a pointer-to-
poi nter-to-pointer structurein thisbook are found intheroutinesr1£t3in §12.5 and
sfroid in §17.4. The necessary allocation and deall ocation functions are

float ***f3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)

Allocate a float 3-dimensional array with subscript range [nrl..nrh] [ncl. .nch] [ndl..ndh].

void free_f3tensor(float **xt, long nrl, long nrh, long ncl, long nch,
long ndl, long ndh)
Free a float 3-dimensional array allocated by f3tensor().

Complex Arithmetic

C does not have complex data types, or predefined arithmetic operations on
complex numbers. That omission is easily remedied with the set of functionsin
the file complex.c whichis printed in full in Appendix C at the back of the book.
A synopsis is as follows:

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

24 Chapter 1. Preliminaries

typedef struct FCOMPLEX {float r,i;} fcomplex;

fcomplex Cadd(fcomplex a, fcomplex b)
Returns the complex sum of two complex numbers.

fcomplex Csub(fcomplex a, fcomplex b)
Returns the complex difference of two complex numbers.

fcomplex Cmul(fcomplex a, fcomplex b)
Returns the complex product of two complex numbers.

fcomplex Cdiv(fcomplex a, fcomplex b)
Returns the complex quotient of two complex numbers.

fcomplex Csqrt(fcomplex z)
Returns the complex square root of a complex number.

fcomplex Conjg(fcomplex z)
Returns the complex conjugate of a complex number.

float Cabs(fcomplex z)
Returns the absolute value (modulus) of a complex number.

fcomplex Complex(float re, float im)
Returns a complex number with specified real and imaginary parts.

fcomplex RCmul(float x, fcomplex a)
Returns the complex product of a real number and a complex number.

The implementation of several of these complex operations in floating-point
arithmetic is not entirely trivial; see §5.4.

Only about half adozen routinesin this book make explicit use of these complex
arithmetic functions. Theresulting codeis not as readable as onewould like, because
the familiar operations +-*/ are replaced by function calls. The C++ extension to
the C language allows operators to be redefined. That would allow more readable
code. However, in this book we are committed to standard C.

We should mention that the above functions assume the ability to pass, return,
and assign structures like FCOMPLEX (or types such as fcomplex that are defined
to be structures) by value. All recent C compilers have this ability, but it is not in
the original K&R C definition. If you are missing it, you will have to rewrite the
functionsin complex. c, making them pass and return pointers to variables of type
fcomplex instead of the variables themselves. Likewise, you will need to modify
the recipes that use the functions.

Several other routines (e.g., the Fourier transforms four1 and fourn) do
complex arithmetic “by hand,” that is, they carry around real and imaginary parts as
float variables. Thisresultsin more efficient code than would be obtained by using
the functionsin complex.c. But the codeis even less readable. Thereis simply no
ideal solution to the complex arithmetic problemin C.

Implicit Conversion of Float to Double

Intraditional (K&R) C, float variables are automatically converted to double
before any operation is attempted, including both arithmetic operations and passing
as arguments to functions. All arithmetic is then done in double precision. If a
float variablereceivestheresult of such an arithmetic operation, the high precision

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

1.2 Some C Conventions for Scientific Computing 25

is immediately thrown away. A corollary of these rules is that al the real-number
standard C library functions are of type double and compute to double precision.

Thejustification for these conversionrulesis, “well, there's nothing wrong with
a little extra precision,” and “this way the libraries need only one version of each
function.” One does not need much experiencein scientific computing to recognize
that the implicit conversion rules are, in fact, sheer madness! In effect, they make it
impossible to write efficient numerical programs. One of the cultural barriers that
separates computer scientists from “regular” scientists and engineers is a differing
point of view on whether a 30% or 50% loss of speed is worth worrying about. In
many real-time or state-of-the-art scientific applications, such alossis catastrophic.
The practical scientist is trying to solve tomorrow’s problem with yesterday’s
computer; the computer scientist, we think, often has it the other way around.

The ANSI C standard happily does not allow implicit conversion for arithmetic
operations, but it does requireit for function arguments, unless the function is fully
prototyped by an ANSI declaration as described earlier in this section. That is
another reason for our being rigorous about using the ANSI prototype mechanism,
and a good reason for you to use an ANSI-compatible compiler.

Some older C compilers do provide an optional compilation mode in which
the implicit conversion of float to double is suppressed. Use this if you can.
In this book, when we write float, we mean float; when we write double,
we mean double, i.e, there is a good algorithmic reason for having higher
precision. Our routines all can tolerate the traditional implicit conversion rules,
but they are more efficient without them. Of course, if your application actually
requires double precision, you can change our declarations from float to double
without difficulty. (The brute force approach is to add a preprocessor statement
#define float double !)

A Few Wrinkles

We like to keep code compact, avoiding unnecessary spaces unless they add
immediate clarity. We usually don’t put space around the assignment operator “=".
Through a quirk of history, however, some C compilers recognize the (nonexistent)
operator “=-" as being equivalent to the subtractive assignment operator “-=", and
“=x" as being the same as the multiplicative assignment operator “*=". That is why
you will see uswritey= -10.0; or y=(-10.0) ;, and y= *a; or y=(*a) ;.

We havethe same viewpoint regarding unnecessary parentheses. You can’'t write
(or read) C effectively unless you memorizeits operator precedence and associativity
rules. Please study the accompanying table while you brush your teeth every night.

We never usethe register storage class specifier. Good optimizing compilers
are quite sophisticated in making their own decisions about what to keep in registers,
and the best choices are sometimes rather counter-intuitive.

Different compilers use different methods of distinguishing between defining
and referencing declarations of the same external name in several files. We follow
the most common scheme, which is aso the ANSI standard. The storage class
extern is explicitly included on all referencing top-level declarations. The storage
class is omitted from the single defining declaration for each external variable. We
have commented these declarations, so that if your compiler uses a different scheme
you can change the code. The various schemes are discussed in §4.8 of [1].

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

26

Chapter 1. Preliminaries

Operator Precedence and Associativity Rulesin C
O function call left-to-right
1 array element
. structure or union member
-> pointer reference to structure
! logical not right-to-left
- bitwise complement
- unary minus
++ increment
- decrement
& address of
* contents of
(type) cast to type
sizeof sizein bytes
* multiply left-to-right
/ divide
yA remainder
+ add |eft-to-right
- subtract
<< bitwise left shift |eft-to-right
>> bitwise right shift
< arithmetic less than |eft-to-right
> arithmetic greater than
<= arithmetic less than or equal to
>= arithmetic greater than or equal to
== arithmetic equal left-to-right
1= arithmetic not equal
& bitwise and left-to-right
- bitwise exclusive or |eft-to-right
| bitwise or left-to-right
&& logical and left-to-right
Il logical or left-to-right
? conditional expression right-to-left
= assignment operator right-to-left
also += -= *= /= Y%=
<<= >>= &= "= |=
, sequential expression left-to-right

We have already alluded to the problem of computing small integer powers of
numbers, most notably the square and cube. The omission of this operation from C
is perhaps the language’s most galling insult to the scientific programmer. All good
FORTRAN compilers recognize expressions like (A+B) **4 and produce in-line code,
in this case with only one add and two multiplies. It is typical for constant integer

powers up to 12 to be thus recognized.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

1.2 Some C Conventions for Scientific Computing 27

In C, the mere problem of squaring is hard enough! Some people “macro-ize”
the operation as

#define SQR(a) ((a)*(a))

However, thisis likely to produce code where SQR (sin(x)) resultsin two cals to
the sine routine! You might be tempted to avoid this by storing the argument of the
squaring function in a temporary variable:

static float sqrarg;
#define SQR(a) (sqrarg=(a),sqrarg*sqrarg)

The global variable sqrarg now has (and needs to keep) scope over the whole
module, which is alittle dangerous. Also, one needs a completely different macroto
square expressions of type int. More seriously, this macro can fail if there are two
SQR operationsin asingle expression. Sincein C the order of evaluation of pieces of
the expression is at the compiler’s discretion, the value of sqrarg in one evaluation
of SQR can be that from the other evaluation in the same expression, producing
nonsensical results. When we need a guaranteed-correct SQR macro, we use the
following, which exploits the guaranteed complete evaluation of subexpressionsin
a conditional expression:

static float sqrarg;
#define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 : sqrarg*sqrarg)

A collection of macros for other simple operationsisincluded in thefilenrutil.h
(see Appendix B) and used by many of our programs. Here are the synopses:

SQR(a) Square a float value.

DSQR(a) Square a double value.
FMAX(a,b) Maximum of two float values.
FMIN(a,b) Minimum of two float values.
DMAX(a,b) Maximum of two double values.
DMIN(a,b) Minimum of two double values.
IMAX(a,b) Maximum of two int values.
IMIN(a,b) Minimum of two int values.
LMAX(a,b) Maximum of two long values.
LMIN(a,b) Minimum of two long values.
SIGN(a,b) Magnitude of a times sign of b.

Scientific programming in C may someday become a bed of roses; for now,
watch out for the thornsl

CITED REFERENCES AND FURTHER READING:

Harbison, S.P., and Steele, G.L., Jr. 1991, C: A Reference Manual, 3rd ed. (Englewood Cliffs,
NJ: Prentice-Hall). [1]

AT&T Bell Laboratories 1985, The C Programmer’s Handbook (Englewood Cliffs, NJ: Prentice-
Hall).

Kernighan, B., and Ritchie, D. 1978, The C Programming Language (Englewood Cliffs, NJ:
Prentice-Hall). [Reference for K&R “traditional” C. Later editions of this book conform to
the ANSI C standard.]

Hogan, T. 1984, The C Programmer’s Handbook (Bowie, MD: Brady Communications).

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

28 Chapter 1. Preliminaries

1.3 Error, Accuracy, and Stability

Althoughwe assumeno prior training of thereader informal numerical analysis,
we will need to presume a common understanding of a few key concepts. We will
define these briefly in this section.

Computers store numbers not with infinite precision but rather in some approxi-
mation that can be packed into a fixed number of bits (binary digits) or bytes (groups
of 8 hits). Almost all computers allow the programmer a choice among several
different such representations or data types. Data types can differ in the number of
bits utilized (the wordlength), but also in the more fundamental respect of whether
the stored number is represented in fixed-point (int or long) or floating-point
(float or double) format.

A number in integer representation is exact. Arithmetic between numbersin
integer representationis also exact, with the provisosthat (i) the answer isnot outside
the range of (usualy, signed) integers that can be represented, and (ii) that division
isinterpreted as producing an integer result, throwing away any integer remainder.

In floating-point representation, a number is represented internally by a sign bit
s (interpreted as plus or minus), an exact integer exponent e, and an exact positive
integer mantissa M. Taken together these represent the number

sx M x B™F (1.3.1)

where B is the base of the representation (usually B = 2, but sometimes B = 16),
and E is the bias of the exponent, a fixed integer constant for any given machine
and representation. An example is shown in Figure 1.3.1.

Several floating-point bit patterns can represent the same number. If B = 2,
for example, a mantissa with leading (high-order) zero bits can be |eft-shifted, i.e.,
multiplied by a power of 2, if the exponent is decreased by a compensating amount.
Bit patterns that are “as left-shifted as they can be” are termed normalized. Most
computers always produce normalized results, since these don’t waste any bits of
the mantissa and thus allow a greater accuracy of the representation. Since the
high-order bit of a properly normalized mantissa (when B = 2) is always one, some
computers don’t store this bit at all, giving one extra bit of significance.

Arithmetic among numbersin floating-point representation is not exact, even if
the operands happen to be exactly represented (i.e., have exact valuesin the form of
equation 1.3.1). For example, two floating numbers are added by first right-shifting
(dividing by two) the mantissa of the smaller (in magnitude) one, simultaneously
increasing its exponent, until the two operands have the same exponent. Low-order
(least significant) bits of the smaller operand are lost by this shifting. If the two
operands differ too greatly in magnitude, then the smaller operand is effectively
replaced by zero, since it is right-shifted to oblivion.

The smallest (in magnitude) floating-point number which, when added to the
floating-point number 1.0, produces a floating-point result different from 1.0 is
termed the machine accuracy ¢,,. A typical computer with B = 2 and a 32-bit
wordlength has ¢,, around 3 x 1078, (A more detailed discussion of machine
characteristics, and a program to determine them, is given in §20.1.) Roughly

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

1.3 Error, Accuracy, and Stability 29

v 00\ .
o(\é\ &Gré@@ §é’
X AR AN <
N $° e S N
O &° [\\QQ’ o
f_/H
¥2=0 10000000 10000000000000000000000 (a
3=0 10000010 11000000000000000000000 (b

Y4=0 01111111 10000000000000000000000 (c)
10077=0 01101001 lHJ(._O_Z]..0110101111111001010 (d)

= 10000010 00000000000000000000000!1 (¢
3+1077=0 10000010 11000000000000000000000 (f)

Figure 1.3.1. Floating point representations of numbers in a typical 32-bit (4-byte) format. (a) The
number 1/2 (note the bias in the exponent); (b) the number 3; (c) the number 1/4; (d) the number
10~7, represented to machine accuracy; (€) the same number 10~ 7, but shifted so as to have the same
exponent as the number 3; with this shifting, al significance islost and 10-7 becomes zero; shifting to
a common exponent must occur before two numbers can be added; (f) sum of the numbers 3 + 10-7,
which equals 3 to machine accuracy. Even though 10~7 can be represented accurately by itself, it cannot
accurately be added to a much larger number.

speaking, the machine accuracy e, isthe fractional accuracy to which floating-point
numbers are represented, corresponding to a change of one in the least significant
bit of the mantissa. Pretty much any arithmetic operation among floating numbers
should be thought of as introducing an additional fractional error of at least € ,,,. This
type of error is called roundoff error.

It is important to understand that ¢,,, is not the smallest floating-point number
that can be represented on a machine. That number depends on how many bits there
are in the exponent, while ¢,,, depends on how many bits there are in the mantissa.

Roundoff errors accumulate with increasing amounts of calculation. If, in the
course of obtaining a calculated value, you perform N such arithmetic operations,
you might be so lucky as to have a total roundoff error on the order of /Ne,,, if
the roundoff errors come in randomly up or down. (The square root comes from a
random-walk.) However, this estimate can be very badly off the mark for two reasons:

(i) It very frequently happens that the regularities of your calculation, or the
peculiarities of your computer, cause the roundoff errorsto accumulate preferentially
in one direction. In this case the total will be of order Ne,,.

(if) Some especially unfavorable occurrences can vastly increase the roundoff
error of single operations. Generally these can be traced to the subtraction of two
very nearly equal numbers, giving a result whose only significant bits are those
(few) low-order ones in which the operands differed. You might think that such a
“coincidental” subtraction is unlikely to occur. Not aways so. Some mathematical
expressions magnify its probability of occurrencetremendously. For example, in the
familiar formula for the solution of a quadratic equation,

_ /b2 —
a

the addition becomes delicate and roundoff-prone whenever ac < b2. (In §5.6 we
will learn how to avoid the problem in this particular case.)

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

30 Chapter 1. Preliminaries

Roundoff error is a characteristic of computer hardware. There is another,
different, kind of error that is a characteristic of the program or algorithm used,
independent of the hardware on which the program is executed. Many numerical
algorithms compute “ discrete” approximations to some desired “ continuous’ quan-
tity. For example, an integral is evaluated numerically by computing a function
at a discrete set of points, rather than at “every” point. Or, a function may be
evaluated by summing a finite number of leading terms in its infinite series, rather
than al infinity terms. In cases like this, there is an adjustable parameter, e.g., the
number of points or of terms, such that the “true” answer is obtained only when
that parameter goes to infinity. Any practical calculation is done with a finite, but
sufficiently large, choice of that parameter.

The discrepancy between the true answer and the answer obtained in a practical
calculation is called the truncation error. Truncation error would persist even on a
hypothetical, “ perfect” computer that had an infinitely accurate representation and no
roundoff error. Asageneral rule thereis not much that a programmer can do about
roundoff error, other than to choose algorithms that do not magnify it unnecessarily
(see discussion of “stability” below). Truncation error, on the other hand, is entirely
under the programmer’s control. In fact, it is only a sight exaggeration to say
that clever minimization of truncation error is practically the entire content of the
field of numerical analysis!

Most of the time, truncation error and roundoff error do not strongly interact
with one another. A calculation can beimagined as having, first, the truncation error
that it would haveif run on an infinite-precision computer, “plus’ the roundoff error
associated with the number of operations performed.

Sometimes, however, an otherwise attractive method can be unstable. This
means that any roundoff error that becomes “mixed into” the calculation at an early
stageis successively magnified until it comesto swamp the true answer. An unstable
method would be useful on a hypothetical, perfect computer; but in this imperfect
world it is necessary for us to require that algorithms be stable — or if unstable
that we use them with great caution.

Here is a simple, if somewhat artificial, example of an unstable algorithm:
Suppose that it is desired to calculate all integer powers of the so-called “Golden
Mean,” the number given by

V5 -1
2

) ~ 0.61803398 (1.3.3)
It turns out (you can easily verify) that the powers ¢ satisfy a simple recursion
relation,

¢n+1 — ¢n71 _ an (134)

Thus, knowing thefirst twovalues¢® = 1 and ¢! = 0.61803398, we can successively
apply (1.3.4) performing only asingle subtraction, rather than aslower multiplication
by ¢, a each stage.

Unfortunately, therecurrence (1.3.4) al so hasanother solution, namely thevalue
—%(\/5 + 1). Since the recurrence is linear, and since this undesired solution has
magnitude greater than unity, any small admixture of it introduced by roundoff errors
will grow exponentially. On atypical machine with 32-bit wordlength, (1.3.4) starts

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

1.3 Error, Accuracy, and Stability 31

to give compl etely wrong answers by about n = 16, at which point ¢ ™ isdownto only
10—, Therecurrence (1.3.4) is unstable, and cannot be used for the purpose stated.

We will encounter the question of stability in many more sophisticated guises,
later in this book.

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 1.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 2.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §1.3.

Wilkinson, J.H. 1964, Rounding Errors in Algebraic Processes (Englewood Cliffs, NJ: Prentice-
Hall).

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

Chapter 2. Solution of Linear
Algebraic Equations

2.0 Introduction

A set of linear algebraic equations looks like this:

a1121 + a12x2 + a1373 + - +aiNTy = by
a21%1 + a22%2 + a2373 + -+ + aaNTN = b2

as1z1 + azer2 + agzrs + - +agyry = by (2.0.1)

ap1T1 + apa®e + apsxs + - +FapuNTN = b

Here the N unknowns z;, j = 1,2,..., N are related by M equations. The
coefficients a;; withi = 1,2,..., M and j = 1,2,..., N are known numbers, as
are the right-hand side quantities b;, i = 1,2,..., M.

Nonsingular versus Singular Sets of Equations

If N = M then there are as many equations as unknowns, and there is a good
chance of solving for a unique solution set of = ;’s. Analytically, there can fail to
be a unique solution if one or more of the M equations is a linear combination of
the others, a condition called row degeneracy, or if al equations contain certain
variables only in exactly the same linear combination, called column degeneracy.
(For square matrices, a row degeneracy implies a column degeneracy, and vice
versa) A set of equations that is degenerate is called singular. We will consider
singular matrices in some detail in §2.6.

Numerically, at least two additional things can go wrong:

e While not exact linear combinations of each other, some of the equations
may be so close to linearly dependent that roundoff errorsin the machine
render them linearly dependent at some stage in the solution process. In
this case your numerical procedure will fail, and it can tell you that it
has failed.

32

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) Bio abpugued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sq00q sadioay [ealswn 1apio 0] ‘pangiyold Apows si ‘1eindwod 1aaias Aue o} (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul 10} pajuelB si uoissiwiad

2.0 Introduction 33

e Accumulated roundoff errors in the solution process can swamp the true
solution. This problem particularly emerges if N is too large. The
numerical procedure does not fail algorithmically. However, it returns a
set of z’s that are wrong, as can be discovered by direct substitution back
into theoriginal equations. Thecloser aset of equationsisto being singular,
the more likely this is to happen, since increasingly close cancellations
will occur during the solution. In fact, the preceding item can be viewed
as the special case where the loss of significance is unfortunately total.

Much of the sophistication of complicated “linear equation-solving packages’
is devoted to the detection and/or correction of these two pathologies. As you
work with large linear sets of equations, you will develop a feeling for when such
sophistication is needed. It is difficult to give any firm guidelines, since there is no
such thing as a “typical” linear problem. But hereis aroughidea: Linear sets with
N as large as 20 or 50 can be routinely solved in single precision (32 hit floating
representations) without resorting to sophisticated methods, if the equations are not
close to singular. With double precision (60 or 64 bits), this number can readily
be extended to NV as large as several hundred, after which point the limiting factor
is generally machine time, not accuracy.

Even larger linear sets, N in the thousands or greater, can be solved when the
coefficients are sparse (that is, mostly zero), by methods that take advantage of the
sparseness. We discuss this further in §2.7.

At the other end of the spectrum, one seems just as often to encounter linear
problems which, by their underlying nature, are close to singular. In this case, you
might need to resort to sophisticated methods even for the case of N = 10 (though
rarely for N = 5). Singular value decomposition (§2.6) is a technique that can
sometimes turn singular problems into nonsingular ones, in which case additional
sophistication becomes unnecessary.

Matrices
Equation (2.0.1) can be written in matrix form as
A-x=b (2.0.2)

Here the raised dot denotes matrix multiplication, A isthe matrix of coefficients, and
b is the right-hand side written as a column vector,

ail a2 ... GIN b1
a a ...oa b

A — 21 22 2N b — 2 (2.0.3)
ayi am2 ... GMN by

By convention, the first index on an element «;; denotes its row, the second
index its column. For most purposes you don’t need to know how a matrix is stored
in a computer’s physical memory; you simply reference matrix elements by their
two-dimensional addresses, e.g., asq4 = a[3] [4]. We have aready seen, in §1.2,
that this C notation can in fact hide a rather subtle and versatile physical storage
scheme, “pointer to array of pointersto rows.” You might wish to review that section

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

34 Chapter 2. Solution of Linear Algebraic Equations

at thispoint. Occasionally it is useful to be able to peer through the vell, for example
to pass awholerow a[il [j], j=1,..., N by thereference al[i].

Tasks of Computational Linear Algebra

We will consider the following tasks as falling in the general purview of this
chapter:

e Solution of thematrix equation A -x = b for an unknownvector x, where A
isasquare matrix of coefficients, raised dot denotes matrix multiplication,
and b is a known right-hand side vector (§2.1-52.10).

o Solution of more than one matrix equation A - X ; = b, for aset of vectors
X;, 7 =1,2,..., each corresponding to adifferent, known right-hand side
vector b;. In this task the key simplification is that the matrix A is held
constant, while the right-hand sides, the b’s, are changed (§2.1-52.10).

e Calculation of thematrix A~ whichisthematrix inverseof asquarematrix
A ie, A-A ' =A"1. A =1 where 1l istheidentity matrix (all zeros
except for ones on the diagonal). This task is equivalent, foran N x N
matrix A, to the previous task with NV different b;’s (j = 1,2,...,N),
namely the unit vectors (b; = &l zero elements except for 1 in the jth
component). The corresponding x’s are then the columns of the matrix
inverse of A (§2.1 and §2.3).

e Calculation of the determinant of a square matrix A (§2.3).

If M < N, orif M = N bhut the equations are degenerate, then there
are effectively fewer equations than unknowns. In this case there can be either no
solution, or el se morethan one solution vector x. Inthelatter event, the solution space
consists of a particular solution x,, added to any linear combination of (typically)
N — M vectors (which are said to be in the nullspace of the matrix A). The task
of finding the solution space of A involves

e Singular value decomposition of a matrix A.

This subject is treated in §2.6.

In the opposite case there are more equations than unknowns, M > N. When
this occurs there is, in general, no solution vector x to equation (2.0.1), and the set
of equations is said to be overdetermined. It happens frequently, however, that the
best “compromise” solution is sought, the one that comes closest to satisfying all
equations simultaneoudly. If closeness is defined in the least-squares sensg, i.e., that
the sum of the sguares of the differences between the left- and right-hand sides of
equation (2.0.1) be minimized, then the overdetermined linear problem reduces to
a (usually) solvable linear problem, caled the

e Linear least-squares problem.
Thereduced set of equationsto be solved can bewritten asthe V x IV set of equations

(AT -A)-x= (AT .b) (2.0.4)

where AT denotes the transpose of the matrix A. Equations (2.0.4) are called the
normal equations of the linear least-squares problem. There is a close connection

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.0 Introduction 35

between singular value decomposition and the linear |east-squares problem, and the
latter is also discussed in §2.6. You should be warned that direct solution of the
normal equations (2.0.4) is not generally the best way to find least-squares solutions.

Some other topics in this chapter include

o |terative improvement of a solution (§2.5)

e Various special forms. symmetric positive-definite (§2.9), tridiagonal
(§2.4), band diagonal (§2.4), Toeplitz (§2.8), Vandermonde (§2.8), sparse
(82.7)

e Strassen’s “fast matrix inversion” (§2.11).
Standard Subroutine Packages

We cannot hope, in this chapter or in this book, to tell you everything thereisto
know about the tasks that have been defined above. In many cases you will have no
alternative but to use sophisticated black-box program packages. Several good ones
are available, though not alwaysin C. LINPACK was devel oped at Argonne National
Laboratories and deserves particular mention because it is published, documented,
and available for free use. A successor to LINPACK, LAPACK, is now becoming
available. Packages available commercialy (though not necessarily in C) include
those in the IMSL and NAG libraries.

You should keep in mind that the sophisticated packages are designed with very
large linear systemsin mind. They therefore go to great effort to minimize not only
the number of operations, but also the required storage. Routines for the various
tasks are usually provided in several versions, corresponding to several possible
simplifications in the form of the input coefficient matrix: symmetric, triangular,
banded, positive definite, etc. If you have a large matrix in one of these forms,
you should certainly take advantage of the increased efficiency provided by these
different routines, and not just use the form provided for general matrices.

There is also a great watershed dividing routines that are direct (i.e., execute
in a predictable number of operations) from routines that are iterative (i.e., attempt
to converge to the desired answer in however many steps are necessary). lterative
methods become preferable when the battle against loss of significanceisin danger
of being logt, either due to large NV or because the problem is close to singular. We
will treat iterative methods only incompletely in this book, in §2.7 and in Chapters
18 and 19. These methods are important, but mostly beyond our scope. We will,
however, discuss in detail a technique which is on the borderline between direct
and iterative methods, namely the iterative improvement of a solution that has been
obtained by direct methods (52.5).

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press).

Gill, PE., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 4.

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S.I.LA.M.).

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

36 Chapter 2. Solution of Linear Algebraic Equations

Coleman, T.F,, and Van Loan, C. 1988, Handbook for Matrix Computations (Philadelphia: S..A.M.).

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall).

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. Il of Handbook for Automatic Com-
putation (New York: Springer-Verlag).

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), Chapter 2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 9.

2.1 Gauss-Jordan Elimination

For inverting a matrix, Gauss-Jordan elimination is about as efficient as any
other method. For solving sets of linear egquations, Gauss-Jordan elimination
produces both the solution of the equations for one or more right-hand side vectors
b, and also the matrix inverse A ~!. However, its principal weaknesses are (i) that it
requires al the right-hand sides to be stored and manipulated at the same time, and
(i) that when the inverse matrix is not desired, Gauss-Jordan is three times slower
than the best alternative techniquefor solving asinglelinear set (§2.3). Themethod's
principal strength is that it is as stable as any other direct method, perhaps even a
bit more stable when full pivoting is used (see below).

If you come along later with an additional right-hand side vector, you can
multiply it by the inverse matrix, of course. This does give an answer, but onethat is
quite susceptible to roundoff error, not nearly as good as if the new vector had been
included with the set of right-hand side vectors in the first instance.

For these reasons, Gauss-Jordan elimination should usually not be your method
of first choice, either for solving linear equations or for matrix inversion. The
decomposition methodsin §2.3 are better. Why do we give you Gauss-Jordan at all?
Because it is straightforward, understandable, solid as a rock, and an exceptionally
good “psychological” backup for those times that something is going wrong and you
think it might be your linear-equation solver.

Some people believe that the backup is more than psychological, that Gauss-
Jordan elimination is an “independent” numerical method. This turns out to be
mostly myth. Except for the relatively minor differences in pivoting, described
below, the actual sequence of operations performed in Gauss-Jordan elimination is
very closely related to that performed by the routinesin the next two sections.

For clarity, and to avoid writing endless ellipses (- - -) wewill write out equations
only for the case of four equations and four unknowns, and with three different right-
hand side vectors that are known in advance. You can write bigger matrices and
extend the equations to the case of N x N matrices, with M sets of right-hand
side vectors, in completely analogous fashion. The routine implemented below is,
of course, general.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.1 Gauss-Jordan Elimination 37

Elimination on Column-Augmented Matrices

Consider the linear matrix equation

a1l a2 a3 a4 11 12 13 Y11 Y12 Y13 Y14
a1 a2 a3 az | wor | [z) [s | | Y21 Y22 w2 w2a
asz1 asz asz as4 z31 32 33 Y31 Y32 Y33 Y34
G41 Q42 Q43 Q44 41 42 43 Y41 Y42 Y43 Y44
b11 bi2 b13 1 0 0 O
_ ba1 ba2 bas 01 0 0
= by | Y| bos [es YU 0 01 0 (2.1.1)
ba1 b2 ba3 0 0 0 1

Here the raised dot (-) signifies matrix multiplication, while the operator LI just
signifies column augmentation, that is, removing the abutting parentheses and
making a wider matrix out of the operands of the LI operator.

It should not take you long to write out equation (2.1.1) and to see that it smply
states that «;; is the ith component (i = 1,2, 3, 4) of the vector solution of the jth
right-hand side (j = 1, 2, 3), the one whose coefficients are b;;,¢ = 1,2, 3, 4; and
that the matrix of unknown coefficients y;; is the inverse matrix of a;;. In other
words, the matrix solution of

[A] . [Xl L Xo LI X3 L Y] = [bl L b2 L b3 L 1] (212)

where A and Y are square matrices, the b;’s and x;’s are column vectors, and 1 is
the identity matrix, simultaneously solves the linear sets

A-xp=by A-Xa=by A-x3=Dbs (2.1.3)
and

A-Y=1 (2.1.4)

Now it is also elementary to verify the following facts about (2.1.1):
e Interchanging any two rows of A and the corresponding rows of the b's
and of 1, does not change (or scramble in any way) the solution x’s and
Y. Rather, it just corresponds to writing the same set of linear equations
in a different order.
e Likewise, the solution set is unchanged and in no way scrambled if we
replace any row in A by alinear combination of itself and any other row,
as long as we do the same linear combination of the rows of theb’sand 1
(which then is no longer the identity matrix, of course).
e Interchanging any two columns of A gives the same solution set only
if we simultaneously interchange corresponding rows of the x’'s and of
Y. In other words, this interchange scrambles the order of the rows in
the solution. If we do this, we will need to unscramble the solution by
restoring the rows to their origina order.
Gauss-Jordan elimination uses one or more of the above operations to reduce
the matrix A to the identity matrix. When this is accomplished, the right-hand side
becomes the solution set, as one sees instantly from (2.1.2).

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

38 Chapter 2. Solution of Linear Algebraic Equations

Pivoting

In “Gauss-Jordan elimination with no pivoting,” only the second operation in
the above list is used. The first row is divided by the element a1, (this being a
trivial linear combination of the first row with any other row — zero coefficient for
the other row). Then the right amount of the first row is subtracted from each other
row to make al the remaining a;;'s zero. The first column of A now agrees with
the identity matrix. We move to the second column and divide the second row by
a9z, then subtract the right amount of the second row from rows 1, 3, and 4, so asto
make their entries in the second column zero. The second column is now reduced
to the identity form. And so on for the third and fourth columns. As we do these
operationsto A, we of course aso do the corresponding operationsto the b’s and to
1 (which by now no longer resembles the identity matrix in any way!).

Obviously we will runinto trouble if we ever encounter a zero element on the
(then current) diagonal when we are going to divide by the diagonal element. (The
element that we divide by, incidentally, is called the pivot element or pivot.) Not so
obvious, but true, isthe fact that Gauss-Jordan elimination with no pivoting (no use of
the first or third proceduresin the above list) is numerically unstablein the presence
of any roundoff error, even when a zero pivot is not encountered. You must never do
Gauss-Jordan elimination (or Gaussian elimination, see below) without pivoting!

So what is this magic pivoting? Nothing more than interchanging rows (partial
pivoting) or rows and columns (full pivoting), so as to put a particularly desirable
element in the diagonal position from which the pivot is about to be selected. Since
we don’t want to mess up the part of theidentity matrix that we have already built up,
we can choose among elements that are both (i) on rows below (or on) the one that
is about to be normalized, and also (ii) on columns to the right (or on) the column
we are about to eliminate. Partial pivoting is easier than full pivoting, because we
don’'t have to keep track of the permutation of the solution vector. Partial pivoting
makes available as pivots only the elements already in the correct column. It turns
out that partial pivoting is “amost” as good as full pivoting, in a sense that can be
made mathematically precise, but which need not concern us here (for discussion
and references, see [1]). To show you both variants, we do full pivoting in the routine
in this section, partial pivoting in §2.3.

We have to state how to recognize a particularly desirable pivot when we see
one. The answer to this is not completely known theoretically. It is known, both
theoretically and in practice, that simply picking the largest (in magnitude) available
element as the pivot isavery good choice. A curiosity of this procedure, however, is
that the choice of pivot will depend onthe original scaling of the equations. If wetake
the third linear equation in our original set and multiply it by afactor of amillion, it
isalmost guaranteed that it will contribute the first pivot; yet the underlying solution
of the equationsis not changed by thismultiplication! One therefore sometimes sees
routines which choose as pivot that element which would have been largest if the
original equations had all been scaled to have their largest coefficient normalized to
unity. Thisiscalled implicit pivoting. Thereis some extrabookkeeping to keep track
of the scale factors by which the rows would have been multiplied. (Theroutinesin
§2.3 include implicit pivoting, but the routine in this section does not.)

Finally, let us consider the storage requirements of the method. With a little
reflection you will see that at every stage of the algorithm, either an element of A is

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.1 Gauss-Jordan Elimination 39

predictably aone or zero (if it isaready in apart of the matrix that has been reduced
to identity form) or else the exactly corresponding element of the matrix that started
as1ispredictably aoneor zero (if itsmate in A has not been reduced to the identity
form). Therefore the matrix 1 does not have to exist as separate storage: The matrix
inverse of A is gradually built up in A as the original A is destroyed. Likewise,
the solution vectors x can gradually replace the right-hand side vectors b and share
the same storage, since after each column in A is reduced, the corresponding row
entry in the b’s is never again used.

Here is the routine for Gauss-Jordan elimination with full pivoting:

#include <math.h>
#include "nrutil.h"
#define SWAP(a,b) {temp=(a);(a)=(b); (b)=temp;}

void gaussj(float **a, int n, float **b, int m)
Linear equation solution by Gauss-Jordan elimination, equation (2.1.1) above. a[1..n][1..n]
is the input matrix. b[1..n][1..m] is input containing the m right-hand side vectors. On
output, a is replaced by its matrix inverse, and b is replaced by the corresponding set of solution
vectors.
{

int *indxc,*indxr,*ipiv;

int i,icol,irow,j,k,1,11;

float big,dum,pivinv,temp;

indxc=ivector(1,n); The integer arrays ipiv, indxr, and indxc are
indxr=ivector(1,n); used for bookkeeping on the pivoting.
ipiv=ivector(l,n);

for (j=1;j<=n;j++) ipiv[jl=0;

for (i=1;i<=n;i++) { This is the main loop over the columns to be
big=0.0; reduced.
for (j=1;j<=n;j++) This is the outer loop of the search for a pivot
if (ipiv[jl !'= 1) element.

for (k=1;k<=n;k++) {
if (ipivl[k] == 0) {
if (fabs(al[jl[k]) >= big) {
big=fabs(alj] [k]);
irow=j;
icol=k;

}
}

++(ipiv[icoll);
We now have the pivot element, so we interchange rows, if needed, to put the pivot
element on the diagonal. The columns are not physically interchanged, only relabeled:
indxc[i], the column of the ith pivot element, is the ith column that is reduced, while
indxr[i] is the row in which that pivot element was originally located. If indxr[i] #
indxc[i] there is an implied column interchange. With this form of bookkeeping, the
solution b's will end up in the correct order, and the inverse matrix will be scrambled
by columns.
if (irow != icol) {

for (1=1;1<=n;1++) SWAP(al[irow][1],al[icol][1])

for (1=1;1<=m;1++) SWAP(b[irow] [1],bl[icol][1])

}

indxr[il=irow; We are now ready to divide the pivot row by the
indxc[i]=icol; pivot element, located at irow and icol.
if (alicol]l[icol] == 0.0) nrerror("gaussj: Singular Matrix");

pivinv=1.0/alicol] [icoll;

alicol]l [icol]l=1.0;

for (1=1;1<=n;1++) alicoll[1] #*= pivinv;
for (1=1;1<=m;1++) b[icoll [1] *= pivinv;

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

40 Chapter 2. Solution of Linear Algebraic Equations

for (11=1;11<=n;11++) Next, we reduce the rows...
if (11 '= icol) { ...except for the pivot one, of course.
dum=a[11] [icol];
a[11] [icol]l=0.0;
for (1=1;1<=n;1++) al[11][1] -
for (1=1;1<=m;1++) b[11][1] -

= alicol] [1]1*dum;
= blicol] [1]1*dum;

}
}
This is the end of the main loop over columns of the reduction. It only remains to unscram-
ble the solution in view of the column interchanges. We do this by interchanging pairs of
columns in the reverse order that the permutation was built up.
for (1=n;1>=1;1--) {

if (indxr[1] !'= indxc[1])
for (k=1;k<=n;k++)
SWAP (a[k] [indxr[1]],alk] [indxc[1]1);

} And we are done.
free_ivector(ipiv,1,n);
free_ivector(indxr,1,n);
free_ivector(indxc,1,n);

Row versus Column Elimination Strategies

The above discussion can be amplified by a modest amount of formalism. Row
operations on a matrix A correspond to pre- (that is, left-) multiplication by some simple
matrix R. For example, the matrix R with components

1 ifi=jandi#24

)1 ifi=2,5=4
Rij; = 1 ifiz=dj=2 (2.15)
0 otherwise

effects the interchange of rows 2 and 4. Gauss-Jordan elimination by row operations alone
(including the possibility of partial pivoting) consists of a series of such left-multiplications,
yielding successively

A-x=b
(-++Rs-R2-R;1-A)-x=---R3-R2-Ry-b
(2.1.6)
(1) x=---R3-Rz2-R;-b
X:-~~R3-R2-R1-b

The key point is that since the R’s build from right to Ieft, the right-hand side is simply
transformed at each stage from one vector to another.

Column operations, on the other hand, correspond to post-, or right-, multiplications
by simple matrices, call them C. The matrix in equation (2.1.5), if right-multiplied onto a
matrix A, will interchange A’s second and fourth columns. Elimination by column operations
involves (conceptually) inserting a column operator, and also its inverse, between the matrix
A and the unknown vector x:

A-x=b

A-C;-Ci'-x=b
A-Ci-Cy-Cil-Cilx=b (2.1.7)

(A-C;-C2-Cz---)---C3"-Cy'-Ci'-x=b

(1)---Cc3'-c;'-cit-x=b

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.2 Gaussian Elimination with Backsubstitution 41

which (peeling of the C™"’s one at a time) implies a solution
X:C1~C2~C3'~~b (218)

Notice the essential difference between equation (2.1.8) and equation (2.1.6). In the
latter case, the C's must be applied to b in the reverse order from that in which they become
known. That is, they must all be stored along the way. This requirement greatly reduces
the usefulness of column operations, generally restricting them to simple permutations, for
example in support of full pivoting.

CITED REFERENCES AND FURTHER READING:
Wilkinson, J.H. 1965, The Algebraic Eigenvalue Problem (New York: Oxford University Press). [1]

Carnahan, B., Luther, H.A., and Wilkes, J.0O. 1969, Applied Numerical Methods (New York:
Wiley), Example 5.2, p. 282.

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Program B-2, p. 298.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.3-1.

2.2 Gaussian Elimination with Backsubstitution

The usefulness of Gaussian elimination with backsubstitution is primarily
pedagogical. It stands between full elimination schemes such as Gauss-Jordan, and
triangular decomposition schemes such as will be discussed in the next section.
Gaussian elimination reduces a matrix not all the way to the identity matrix, but
only halfway, to a matrix whose components on the diagonal and above (say) remain
nontrivial. Let us now see what advantages accrue.

Suppose that in doing Gauss-Jordan elimination, as described in §2.1, we at
each stage subtract away rows only below the then-current pivot element. When a o5
is the pivot element, for example, we divide the second row by its value (as before),
but now use the pivot row to zero only ase and a4z, NOt a1 (See equation 2.1.1).
Suppose, also, that we do only partial pivoting, never interchanging columns, so that
the order of the unknowns never needs to be modified.

Then, when we have done this for all the pivots, we will be left with a reduced
equation that looks like this (in the case of a single right-hand side vector):

/ / / / /
ajp @12 Qi3 Gyy T1 1
/ lA / /

0 ayp ax ay T2 | 02 (2.2.1)

0 0 ahe a x3 | | bl -

33 Q34 3 3
/ /
O O O a44 Ty 4

Here the primes signify that the o’s and b’'s do not have their original numerical
values, but have been modified by all the row operations in the elimination to this
point. The procedure up to this point is termed Gaussian elimination.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

42 Chapter 2. Solution of Linear Algebraic Equations

Backsubstitution

But how do we solve for the’s? The lastz (x4 in this example) is already

isolated, namely

xy = b} /aly, (2.2.2
With the lastz known we can move to the penultimate
1
x3 = —[bs — Taaky] (2.2.3
a33

and then proceed with the before that one. The typical step is

a Z awgc7 (2.2.4

Jj=1+1

T, = ——

The procedure defined by equation (2.2.4) is cabbadksubstitution. The com-

bination of Gaussian elimination and backsubstitution yields a solution to the set

of equations.

The advantage of Gaussian elimination and backsubstitution over Gauss-Jord

elimination is simply that the former is faster in raw operations count;

innermost loops of Gauss-Jordan elimination, each containing one subtraction an
one multiplication, are executed® and N2M times (where there ar® equations
and M unknowns). The corresponding loops in Gaussian elimination are executeds
only 3]\73 times (only half the matrix is reduced, and the increasing numbers of 3
predictable zeros reduce the count to one-third), é[MZM times, respectively.
Each backsubstitution of a right-hand S|de§—lé»f2 executions of a similar loop (one
multiplication plus one subtraction). FdZ < N (only a few right-hand sides)
Gaussian elimination thus has about a factor three advantage over Gauss-Jord
(We could reduce this advantage to a factor 1.:ititycomputing the inverse matrix

as part of the Gauss-Jordan scheme.)
For computing the inverse matrix (which we can view as the casd 6t N

right-hand sides, namely th¥ unit vectors which are the columns of the identity

matrix), Gaussian elimination and backsubstitution at first glance regmﬁe(matrlx

reductlon)+ L N3 (right-hand side manipulations) 5 L N3 (N backsubstitutions)
4N3 loop executlons which is more than the&? for Gauss Jordan. However, the
unlt vectors are quite special in containing all zeros except for one element. If thi

is taken into account, the right-side manipulations can be reduced toéd\ﬁifyloop

executions, and, for matrix inversion, the two methods have identical efficiencies.
Both Gaussian elimination and Gauss-Jordan elimination share the disadvanta

that all right-hand sides must be known in advance. Ihiedecomposition method

in the next section does not share that deficiency, and also has an equally sm

operations count, both for solution with any number of right-hand sides, and for

a

S

Bous

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswn 18pJo o] ‘pangiyold Apois si ‘1eindwod 1aaias Aue o} (suo siyy Buipnjoul) saji a|jqepeal

‘(Alu&eouauty uuoN) €2¥/-2/8-008-T |[e2 JO Wwod Ju mmm//:dny

puss

) ﬁJo'eﬁpqueo@/ueslsnogpup 0] rewa

SINO

uﬁ'g YUON ap!

matrix inversion. For this reason we will not implement the method of Gaussian

elimination as a routine.

CITED REFERENCES AND FURTHER READING:

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.3-1.

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

2.3 LU Decomposition and Its Applications 43

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §2.1.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §2.2.1.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

2.3 LU Decomposition and Its Applications

Suppose we are able to write the mathixas a product of two matrices,
L-U=A (2.3.)

wherelL is lower triangular (has elements only on the diagonal and below) End
is upper triangular (has elements only on the diagonal and above). For the case of
a4 x 4 matrix A, for example, equation (2.3.1) would look like this:

a1 0 0 0 B11 P2 P13 Bua a1l a2 a3 a4

a1 az 0 0 | .| 0 P22 B2z f2a| _ [a21 a2z a2z a2

agr az2 asz 0 0 0 [B33 B34 a3l as2 as3 as4

Q41 Q42 Q43 Q44 0 0 0 B a4l Q42 Q43 Q44
(2.3.2

‘(Aluo eouBWY YUON) £21/-2/.8-008-T €2 JO Wod Ju mmm//:dny

We can use a decomposition such as (2.3.1) to solve the linear set
A-x=(L-U).-x=L-U-x)=b (2.3.3
by first solving for the vectoy such that

L-y=b (2.3.4
and then solving
U-x=y (2.3.95

3@)AISSISN0108IP 0] [IRWS PUdS 10

What is the advantage of breaking up one linear set into two successive ones
The advantage is that the solution of a triangular set of equations is quite trivial, a
we have already seen §2.2 (equation 2.2.4). Thus, equation (2.3.4) can be solved
by forward substitution as follows,

by
yr=—
Q11
1 i—1 (23@
i =— [bi — ijYj 1 =2,3,...,N

‘(eauBWY YUON 3pISINo) ﬁJoeﬁpuq%fle
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

while (2.3.5) can then be solved bgcksubstitution exactly as in equations (2.2.2)—
(2.2.4),

oy = IV
BNN
N (2.3.9
1
vi=— lyi— S Bz, i=N_-1,N-2,...1
B |V 2 P

j=i+1

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

44 Chapter 2. Solution of Linear Algebraic Equations

Equations (2.3.6) and (2.3.7) total (for each right-hand side b) NV 2 executions
of an inner loop containing one multiply and one add. If we have N right-hand
sides which are the unit column vectors (which is the case when we are inverting a
matrix), then taking into account the leading zeros reduces the total execution count
of (2.3.6) from £ N? to £ N3, while (2.3.7) is unchanged at 5 N®.

Notice that, once we have the LU decomposition of A, we can solve with as
many right-hand sides as we then care to, one at atime. Thisis adistinct advantage
over the methods of §2.1 and §2.2.

Performing the LU Decomposition

How then can we solve for L and U, given A? First, we write out the
1, jth component of equation (2.3.1) or (2.3.2). That component always is a sum
beginning with

aiBij+ - =ag

The number of termsin the sum depends, however, on whether i or j is the smaller
number. We have, in fact, the three cases,

<] i Prj + qizfay + - + @iy = agj (23.8)
=] i Prj + qizfay + - + @Bl = aij (23.9)
P> i1 B + By + -+ i B = agj (2.3.10)

Equations (2.3.8)«(2.3.10) total NV 2 equationsfor the N2 + N unknown a’sand
('s (the diagonal being represented twice). Sincethe number of unknownsis greater
than the number of equations, we areinvited to specify /V of the unknownsarbitrarily
andthentry to solvefor theothers. Infact, aswe shall seg, itisalways possibleto take

A surprising procedure, now, is Crout’s algorithm, which quite trivially solves
the set of N2 + IV equations (2.3.8)—(2.3.11) for al the o’sand 3’s by just arranging
the equations in a certain order! That order is as follows:

e Setay;; =1,i=1,...,N (equation 2.3.11).

e For each j = 1,2,3,..., N do these two procedures. First, for i =

1,2,...,7,use(2.3.8), (2.3.9), and (2.3.11) to solve for 3,;, namely

i—1
Bij = aij — Z ik Brj - (23.12)
k=1

(Wheni = 1in2.3.12the summationtermistaken to mean zero.) Second,
fori=7+1,5+2,...,N use(2.3.10) to solve for «;;, namely

1 =
Qij = 75— | Gij — Z kP | - (2.3.13)
Bsi k=1

Be sure to do both procedures before going on to the next ;.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.3 LU Decomposition and Its Applications 45

e ___ N\
©) i
K N
: \
\ T ¥ etc.
IR
® @i
N0,
W)
Y Y Y
— _/

Figure 2.3.1. Crout's algorithm for LU decomposition of a matrix. Elements of the origina matrix are
modified in the order indicated by lower case letters. a, b, ¢, etc. Shaded boxes show the previously
modified elements that are used in modifying two typical elements, each indicated by an “x”.

If you work through a few iterations of the above procedure, you will see that
the o’s and 3’s that occur on the right-hand side of equations (2.3.12) and (2.3.13)
are already determined by the time they are needed. You will also see that every a ;;
is used only once and never again. This meansthat the corresponding o ;; or 3;; can
be stored in the location that the « used to occupy: the decompositionis “in place.”
[The diagonal unity elements «;; (equation 2.3.11) are not stored at al.] In brief,
Crout’'s method fills in the combined matrix of o's and s,

Bi1 Bz Pz Pua
a1 Paz P2z P

2.3.14
agr a3z B33 B ()
a1 age oz Baa

by columns from left to right, and within each column from top to bottom (see
Figure 2.3.1).

What about pivoting? Pivoting (i.e., selection of a salubrious pivot element for
the division in equation 2.3.13) is absolutely essential for the stability of Crout's

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

46 Chapter 2. Solution of Linear Algebraic Equations

method. Only partial pivoting (interchange of rows) can be implemented efficiently.
However this is enough to make the method stable. This means, incidentally, that
we don't actually decompose the matrix A into LU form, but rather we decompose
a rowwise permutation of A. (If we keep track of what that permutation is, this
decomposition is just as useful as the original one would have been.)

Pivoting is dlightly subtle in Crout’s algorithm. The key point to notice is that
equation (2.3.12) in the case of ¢ = j (its final application) is exactly the same as
equation (2.3.13) except for the division in the latter equation; in both cases the
upper limit of thesumisk = j — 1 (= ¢ — 1). This means that we don't have to
commit ourselves as to whether the diagonal element 3;; is the one that happens
to fall on the diagonal in the first instance, or whether one of the (undivided) o ;;'s
belowitinthecolumn,i = j+1,..., N,istobe"promoted” to becomethe diagonal
(. This can be decided after all the candidates in the column are in hand. Asyou
should be able to guess by now, we will choose the largest one as the diagonal
(pivot element), then do all the divisions by that element en masse. Thisis Crout’s
method with partial pivoting. Our implementation has one additional wrinkle: It
initially finds the largest element in each row, and subsequently (when it is looking
for the maximal pivot element) scales the comparison asif we had initially scaled all
the equations to make their maximum coefficient equal to unity; thisis the implicit
pivoting mentioned in §2.1.

#include <math.h>
#include "nrutil.h"
#define TINY 1.0e-20 A small number.

void ludcmp(float **a, int n, int *indx, float *d)
Given a matrix a[1..n] [1..n], this routine replaces it by the LU decomposition of a rowwise
permutation of itself. a and n are input. a is output, arranged as in equation (2.3.14) above;
indx[1..n] is an output vector that records the row permutation effected by the partial
pivoting; d is output as 1 depending on whether the number of row interchanges was even
or odd, respectively. This routine is used in combination with 1ubksb to solve linear equations
or invert a matrix.
{

int i,imax,j,k;

float big,dum,sum,temp;

float *vv; vv stores the implicit scaling of each row.

vv=vector(1,n);

*d=1.0; No row interchanges yet.
for (i=1;i<=n;i++) { Loop over rows to get the implicit scaling informa-
big=0.0; tion.

for (j=1;j<=n;j++)
if ((temp=fabs(al[il[j1)) > big) big=temp;

if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
No nonzero largest element.
vv[i]=1.0/big; Save the scaling.
}
for (j=1;j<=n;j++) { This is the loop over columns of Crout's method.
for (i=1;i<j;i++) { This is equation (2.3.12) except for ¢ = j.
sum=a[i] [j];
for (k=1;k<i;k++) sum -= al[il[k]l*alk][j];
ali] [j]=sum;
}
big=0.0; Initialize for the search for largest pivot element.
for (i=j;i<=n;i++) { This is ¢ = j of equation (2.3.12) and i = j+1... N
sum=a[il [j]; of equation (2.3.13).

for (k=1;k<j;k++)

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.3 LU Decomposition and Its Applications 47

}

sum -= ali] [k]*alk][j];
ali] [jl=sum;
if ((dum=vv[i]*fabs(sum)) >= big) {
Is the figure of merit for the pivot better than the best so far?

big=dum;
imax=i;
}
}
if (j != imax) { Do we need to interchange rows?
for (k=1;k<=n;k++) { Yes, do so...
dum=a[imax] [k] ;
alimax] [k]=alj] [k];
alj] [k]=dum;
}
*d = -(xd); ...and change the parity of d.
vv[imax]=vv[j]; Also interchange the scale factor.
}

indx[j]=imax;
if (aljl[j]l == 0.0) aljl[j1=TINY;
If the pivot element is zero the matrix is singular (at least to the precision of the
algorithm). For some applications on singular matrices, it is desirable to substitute
TINY for zero.
if (j '=n) { Now, finally, divide by the pivot element.
dum=1.0/(al3j1[j1);
for (i=j+1;i<=n;i++) alil[j] *= dum;
}

Go back for the next column in the reduction.

free_vector(vv,1,n);

Here isthe routine for forward substitution and backsubstitution, implementing
equations (2.3.6) and (2.3.7).

void lubksb(float **a, int n, int *indx, float b[])

Solves the set of n linear equations A-X = B. Herea[1..n] [1..n] isinput, not as the matrix
A but rather as its LU decomposition, determined by the routine ludcmp. indx[1..n] isinput
as the permutation vector returned by ludcmp. b[1..n] is input as the right-hand side vector
B, and returns with the solution vector X. a, n, and indx are not modified by this routine
and can be left in place for successive calls with different right-hand sides b. This routine takes
into account the possibility that b will begin with many zero elements, so it is efficient for use
in matrix inversion.

{

int i,1i=0,ip,J;

float sum;

for (i=1;i<=n;i++) { When ii is set to a positive value, it will become the
ip=indx[il; index of the first nonvanishing element of b. We now
sum=b [ip] ; do the forward substitution, equation (2.3.6). The
blipl=blil; only new wrinkle is to unscramble the permutation
if (ii) as we go.

for (j=ii;j<=i-1;j++) sum -= ali] [j1*b[j];

else if (sum) ii=i; A nonzero element was encountered, so from now on we
b[il=sum; will have to do the sums in the loop above.

}

for (i=n;i>=1;i--) { Now we do the backsubstitution, equation (2.3.7).
sum=b[i];
for (j=i+1;j<=n;j++) sum -= a[il[jI1*b[jl;
bli]l=sum/a[i] [i]; Store a component of the solution vector X.

} All done!

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

48 Chapter 2. Solution of Linear Algebraic Equations

The LU decomposition in ludcmp requires about %N 3 executions of the inner
loops (each with one multiply and one add). This is thus the operation count
for solving one (or a few) right-hand sides, and is a factor of 3 better than the
Gauss-Jordan routine gaussj which was given in §2.1, and a factor of 1.5 better
than a Gauss-Jordan routine (not given) that does not compute the inverse matrix.
For inverting a matrix, the total count (including the forward and backsubstitution
as discussed following equation 2.3.7 above) is (% + 1 + 2)N3 = N3, the same
as gaussj.

To summarize, this is the preferred way to solve the linear set of equations
A-x=Dh

float **a,*b,d;
int n,*indx;

ludcmp(a,n,indx,&d) ;
lubksb(a,n,indx,b);

The answer x will be given back in b. Your original matrix A will have
been destroyed.

If you subsequently want to solve a set of equations with the same A but a
different right-hand side b, you repeat only

lubksb(a,n,indx,b);

not, of course, with the original matrix A, but with a and indx as were already
set by ludcmp.

Inverse of a Matrix

Using the above LU decomposition and backsubstitution routines, it is com-
pletely straightforward to find the inverse of a matrix column by column.

#define N ...
float *x*a,*xy,d,*col;
int i, j,*indx;

ludcmp(a,N,indx,&d) ; Decompose the matrix just once.
for(j=1;j<=N;j++) { Find inverse by columns.
for(i=1;i<=N;i++) col[i]=0.0;
col[jl=1.0;

lubksb(a,N,indx,col);
for(i=1;i<=N;i++) y[il[jl=coll[il;

The matrix y will now contain the inverse of the origina matrix a, which will have
been destroyed. Alternatively, there is nothing wrong with using a Gauss-Jordan
routine like gaussj (§2.1) to invert a matrix in place, again destroying the original.
Both methods have practically the same operations count.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

2.3 LU Decomposition and Its Applications 49

Incidentally, if you ever have the need to compute A = - B from matrices A
and B, you should LU decompose A and then backsubstitute with the columns of
B instead of with the unit vectors that would give A’s inverse. This saves a whole
matrix multiplication, and is also more accurate.

Determinant of a Matrix

The determinant of an LU decomposed matrix is just the product of the
diagonal elements,

N
det =[] 8 (2.3.15)
j=1

We don't, recall, compute the decomposition of the original matrix, but rather a
decomposition of a rowwise permutation of it. Luckily, we have kept track of
whether the number of row interchanges was even or odd, so we just preface the
product by the corresponding sign. (You now finally know the purpose of setting
d in the routine ludcmp.)

Calculation of a determinant thus requires one call to 1udcmp, with no subse-
guent backsubstitutions by lubksb.

#define N ...
float *x*a,d;
int j,*indx;

ludcmp(a,N,indx,&d) ; This returns 4 as +1.
for(j=1;j<=N;j++) d *= a[jl[j];

The variable d now contains the determinant of the origina matrix a, which will
have been destroyed.

For a matrix of any substantial size, it is quite likely that the determinant will
overflow or underflow your computer’s floating-point dynamic range. In this case
you can modify the loop of the above fragment and (e.g.) divide by powers of ten,
to keep track of the scale separately, or (e.g.) accumulate the sum of logarithms of
the absolute values of the factors and the sign separately.

Complex Systems of Equations

If your matrix A isreal, but the right-hand side vector is complex, say b + <d, then (i)
LU decompose A in the usual way, (ii) backsubstitute b to get the real part of the solution
vector, and (iii) backsubstitute d to get the imaginary part of the solution vector.

If the matrix itself is complex, so that you want to solve the system

(A +iC) - (x +iy) = (b + id) (2.3.16)

then there are two possible ways to proceed. The best way is to rewrite ludcmp and 1ubksb
as complex routines. Complex modulus substitutes for absolute value in the construction of
the scaling vector vv and in the search for the largest pivot elements. Everything else goes
through in the obvious way, with complex arithmetic used as needed. (See §§1.2 and 5.4 for
discussion of complex arithmetic in C.)

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

50 Chapter 2. Solution of Linear Algebraic Equations

A quick-and-dirty way to solve complex systems is to take the real and imaginary
parts of (2.3.16), giving

A-x—C-y=b

(2.3.17)
C-x+A-y=d

which can be written as a 2N x 2N set of real equations,

(¢ %)-6)-(8) 2310

and then solved with 1udcmp and 1ubksb in their present forms. This scheme is a factor of
2 inefficient in storage, since A and C are stored twice. It is aso a factor of 2 inefficient
in time, since the complex multiplies in a complexified version of the routines would each
use 4 real multiplies, while the solution of a2/N x 2N problem involves 8 times the work of
an N x N one. If you can tolerate these factor-of-two inefficiencies, then equation (2.3.18)
is an easy way to proceed.

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapter 4.

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S..LA.M.).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §3.3, and p. 50.

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), Chapters 9, 16, and 18.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
84.2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.11.

Horn, R.A., and Johnson, C.R. 1985, Matrix Analysis (Cambridge: Cambridge University Press).

2.4 Tridiagonal and Band Diagonal Systems
of Equations

The special case of a system of linear equations that is tridiagonal, that is, has
nonzero elements only on the diagonal plus or minus one column, is one that occurs
frequently. Also common are systemsthat are band diagonal, with nonzero el ements
only along afew diagonal lines adjacent to the main diagonal (above and below).

For tridiagonal sets, the procedures of LU decomposition, forward- and back-
substitution each take only O (V') operations, and the whole solution can be encoded
very concisely. Theresulting routinetridag isonethat wewill usein later chapters.

Naturally, one does not reserve storage for the full N x N matrix, but only for
the nonzero components, stored as three vectors. The set of equationsto be solvedis

bl C1 0 U1l T1

az by ca - Us o
. (24.)

an—1 byn—1 cN—1 UN—1 TN-1

0 anN bN UN TN

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.4 Tridiagonal and Band Diagonal Systems of Equations 51

Noticethat ¢, and ¢ 5 areundefined and are not referenced by theroutinethat follows.

#include "nrutil.h"

void tridag(float a[], float b[], float c[], float r[], float ul],
unsigned long n)
Solves for a vector ul[l..n] the tridiagonal linear set given by equation (2.4.1). a[l..n],
b[1..n], c[1..n], and r[1..n] are input vectors and are not modified.
{
unsigned long j;
float bet,*gam;

gam=vector(1,n); One vector of workspace, gam is needed.

if (b[1] == 0.0) nrerror("Error 1 in tridag");

If this happens then you should rewrite your equations as a set of order N — 1, with usg

trivially eliminated.

ul1]=r[1]/(bet=b[1]);

for (j=2;j<=n;j++) { Decomposition and forward substitution.
gam[jl=c[j-1]/bet;
bet=b[jl-aljl*gam[j];

if (bet == 0.0) nrerror ("Error 2 in tridag"); Algorithm fails; see be-
uljl=(r[jl-aljl*ulj-11)/bet; low.

}

for (j=(n-1);j>=1;j--)
uljl -= gam[j+1]1*ulj+1]; Backsubstitution.

free_vector(gam,1,n);

Thereis no pivoting in tridag. Itisfor thisreason that tridag can fail even
when the underlying matrix is nonsingular: A zero pivot can be encountered even for
anonsingular matrix. Inpractice, thisisnot something to lose sleep about. Thekinds
of problems that lead to tridiagonal linear sets usually have additional properties
which guarantee that the algorithm in tridag will succeed. For example, if

bjl > lal +1¢;| j=1,...,N (2.4.2)

(called diagonal dominance) then it can be shown that the al gorithm cannot encounter
a zero pivot.

It is possible to construct special examplesin which the lack of pivoting in the
algorithm causes numerical instability. Inpractice, however, suchinstability isalmost
never encountered — unlike the general matrix problem where pivoting is essential.

The tridiagonal agorithm is the rare case of an algorithm that, in practice, is
more robust than theory says it should be. Of course, should you ever encounter a
problem for which tridag fails, you can instead use the more general method for
band diagonal systems, now described (routines bandec and banbks).

Some other matrix forms consisting of tridiagonal with a small number of
additional elements (e.g., upper right and lower left corners) also allow rapid
solution; see §2.7.

Band Diagonal Systems

Where tridiagonal systems have nonzero elements only on the diagonal plus or minus
one, band diagonal systemsare slightly more general and have (say) mu > 0 nonzero elements
immediately to the left of (below) the diagonal and m2 > 0 nonzero elementsimmediately to
itsright (aboveit). Of course, thisisonly a useful classification if m; and m2 areboth < N.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

52 Chapter 2. Solution of Linear Algebraic Equations

In that case, the solution of the linear system by LU decomposition can be accomplished
much faster, and in much less storage, than for the general N x N case.
The precise definition of a band diagonal matrix with elements a;; is that

ai;j =0 when j>i+mo oOf i>j+m (2.4.3)

Band diagonal matrices are stored and manipulated in a so-called compact form, which results
if the matrix is tilted 45° clockwise, so that its nonzero elements lie in a long, narrow
matrix with m1 4+ 1 + mo columns and N rows. This is best illustrated by an example:
The band diagonal matrix

3 1.0 0 0 0 O
4 1 5 0 0 0O
9 2 6 5 0 0 O
0358900 (2.4.4)
007 9 3 20
00 0 3 8 4 6
00 0 0 2 4 4
whichhas N = 7, m; = 2, and mz = 1, is stored compactly asthe 7 x 4 matrix,
(2.4.5)

NWJwok 8
=00 O Ut R
= WO o W
8 N O OOt

Here = denotes elements that are wasted space in the compact format; these will not be
referenced by any manipulations and can have arbitrary values. Notice that the diagona
of the original matrix appears in column m; + 1, with subdiagonal elements to its left,
superdiagonal elements to its right.

The simplest manipulation of a band diagonal matrix, stored compactly, is to multiply
it by a vector to itsright. Although this is algorithmically trivial, you might want to study
the following routine carefully, as an example of how to pull nonzero elements a;; out of the
compact storage format in an orderly fashion.

#include "nrutil.h"

void banmul(float **a, unsigned long n, int ml, int m2, float x[], float b[])
Matrix multiply b = A - X, where A is band diagonal with m1 rows below the diagonal and m2
rows above. The input vector X and output vector b are stored as x[1..n] and b[1..n],
respectively. The array a[1..n] [1..m1+m2+1] stores A as follows: The diagonal elements
are in a[l..n] [m1+1]. Subdiagonal elements are in alj..n][1..m1] (with j > 1 ap-
propriate to the number of elements on each subdiagonal). Superdiagonal elements are in
al[1l..5] [m1+2..m1+m2+1] with j < n appropriate to the number of elements on each su-
perdiagonal.
{

unsigned long i,j,k,tmploop;

for (i=1;i<=n;i++) {
k=i-m1-1;
tmploop=LMIN(m1+m2+1,n-k) ;
b[i]=0.0;
for (j=LMAX(1,1-k);j<=tmploop;j++) bl[i]l += alil [j1*x[j+k];

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.4 Tridiagonal and Band Diagonal Systems of Equations 53

It is not possible to store the LU decomposition of a band diagonal matrix A quite
as compactly as the compact form of A itself. The decomposition (essentially by Crout's
method, see §2.3) produces additional nonzero “fill-ins.” One straightforward storage scheme
isto return the upper triangular factor (U) in the same space that A previously occupied, and
to return the lower triangular factor (L) in a separate compact matrix of size N x my. The
diagonal elements of U (whose product, times d = +1, gives the determinant) are returned
in the first column of A’s storage space.

The following routine, bandec, is the band-diagonal analog of 1udcmp in §2.3:

#include <math.h>
#define SWAP(a,b) {dum=(a);(a)=(b);(b)=dum;}
#define TINY 1.0e-20

void bandec(float **a, unsigned long n, int ml, int m2, float **al,

unsigned long indx[], float *d)
Given an n X n band diagonal matrix A with m1 subdiagonal rows and m2 superdiagonal rows,
compactly stored in the array a[1..n] [1..m1+m2+1] as described in the comment for routine
banmul, this routine constructs an LU decomposition of a rowwise permutation of A. The upper
triangular matrix replaces a, while the lower triangular matrix is returned in al[1..n] [1..m1].
indx[1..n] is an output vector which records the row permutation effected by the partial
pivoting; d is output as 41 depending on whether the number of row interchanges was even
or odd, respectively. This routine is used in combination with banbks to solve band-diagonal
sets of equations.
{

unsigned long i,j,k,1;

int mm;

float dum;

mm=m1+m2+1;

1=m1;

for (i=1;i<=m1;i++) { Rearrange the storage a bit.
for (j=mi+2-i;j<=mm;j++) alil[j-1l=alil [jI;
1--;

for (j=mm-1;j<=mm;j++) alil[j]=0.0;

}
*d=1.0;
1=m1;
for (k=1;k<=n;k++) { For each row...
dum=a[k] [1];
i=k;
if (1 < n) 1++;
for (j=k+1;j<=1;j++) { Find the pivot element.
if (fabs(al[jl[1]) > fabs(dum)) {
dum=a[j] [1];
i=3;
}
}
indx[k]=i;
if (dum == 0.0) alk][1]=TINY;
Matrix is algorithmically singular, but proceed anyway with TINY pivot (desirable in
some applications).
if (1 !=k) { Interchange rows.
*d = -(*d);
for (j=1;j<=mm;j++) SWAP(alk][jl,alil[j])
}
for (i=k+1;i<=1;i++) { Do the elimination.
dum=a[il [1]/a[k] [1];
al[k] [i-k]=dum;
for (j=2;j<=mm;j++) alil[j-1]=alil [j1-dum*a[k][j];
al[i] [mm]=0.0;
}
}

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

54 Chapter 2. Solution of Linear Algebraic Equations

Some pivoting is possible within the storage limitations of bandec, and the above
routine does take advantage of the opportunity. In general, when TINY is returned as a
diagonal element of U, then the original matrix (perhaps as modified by roundoff error)
isin fact singular. In this regard, bandec is somewhat more robust than tridag above,
which can fail algorithmically even for nonsingular matrices; bandec isthus also useful (with
m1 = mg = 1) for some ill-behaved tridiagonal systems.

Oncethematrix A has been decomposed, any number of right-hand sides can be solvedin
turn by repeated callsto banbks, the backsubstitution routine whose analog in §2.3 is Lubksb.

#define SWAP(a,b) {dum=(a);(a)=(b); (b)=dum;}

void banbks(float **a, unsigned long n, int ml, int m2, float **al,

unsigned long indx[], float b[])
Given the arrays a, al, and indx as returned from bandec, and given a right-hand side vector
b[1..n], solves the band diagonal linear equations A -x = b. The solution vector X overwrites
b[1..n]. The other input arrays are not modified, and can be left in place for successive calls
with different right-hand sides.
{

unsigned long i,k,1;

int mm;

float dum;

mm=ml+m2+1;
1=m1;
for (k=1;k<=n;k++) { Forward substitution, unscrambling the permuted rows
i=indx[k]; as we go.
if (i '= k) SWAP(b[k],b[i])
if (1 < n) 1++;
for (i=k+1;i<=1;i++) b[i] -= allk] [i-k]*b[k];
}
1=1;
for (i=n;i>=1;i--) { Backsubstitution.
dum=b[i];
for (k=2;k<=1;k++) dum -= a[i] [k]*b[k+i-1];
bl[il=dum/a[i] [1];
if (1 < mm) 1++;

The routines bandec and banbks are based on the Handbook routines bandetl and
bansol1 in[1].

CITED REFERENCES AND FURTHER READING:

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell), p. 74.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Example 5.4.3, p. 166.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.11.

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. Il of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter 1/6. [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §4.3.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.5 Iterative Improvement of a Solution to Linear Equations 55

> (AN
N\, —>
S
Al ", \bl+ b
+ //)/(b
Ox ,” \\ ob
// \
I —— Al
— &

Figure 2.5.1. Iterative improvement of the solution to A - x = b. Thefirst guess x + dx is multiplied by
A to produce b + éb. The known vector b is subtracted, giving éb. The linear set with this right-hand
side isinverted, giving x. Thisis subtracted from the first guess giving an improved solution x.

2.5 Iterative Improvement of a Solution to
Linear Equations

Obvioudly it is not easy to obtain greater precision for the solution of a linear
set than the precision of your computer’s floating-point word. Unfortunately, for
large sets of linear equations, it is not aways easy to obtain precision equa to, or
even comparable to, the computer’s limit. In direct methods of solution, roundoff
errors accumulate, and they are magnified to the extent that your matrix is close
to singular. You can easily lose two or three significant figures for matrices which
(you thought) were far from singular.

If this happensto you, thereis a neat trick to restore the full machine precision,
called iterative improvement of the solution. The theory is very straightforward (see
Figure 2.5.1): Suppose that a vector x is the exact solution of the linear set

A-x=hb (25.1)
You don't, however, know x. You only know some slightly wrong solution x + 60X,
where dx istheunknown error. When multiplied by the matrix A, your slightly wrong
solution givesaproduct slightly discrepant fromthedesired right-hand side b, namely
A-(x+dx)=b+db (25.2)

Subtracting (2.5.1) from (2.5.2) gives

A 6x = ob (25.3)

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

56 Chapter 2. Solution of Linear Algebraic Equations

But (2.5.2) can also be solved, trivially, for §b. Substituting thisinto (2.5.3) gives
A-X=A-(x+0x)—Db (2.5.4)

In this equation, the whole right-hand side is known, since x + 0x is the wrong
solution that you want to improve. It is essentia to calculate the right-hand side
in double precision, since there will be alot of cancellation in the subtraction of b.
Then, we need only solve (2.5.4) for the error §x, then subtract this from the wrong
solution to get an improved solution.

An important extra benefit occurs if we obtained the original solution by LU
decomposition. In this case we aready havethe LU decomposed form of A, and all
we need do to solve (2.5.4) is compute the right-hand side and backsubstitute!

The code to do al this is concise and straightforward:

#include "nrutil.h"

void mprove(float **a, float **alud, int n, int indx[], float b[], float x[])
Improves a solution vector x[1..n] of the linear set of equations A - X = B. The matrix
a[1..n][1..n], and the vectors b[1..n] and x[1..n] are input, as is the dimension n.
Also input is alud[1..n] [1..n], the LU decomposition of a as returned by ludcmp, and
the vector indx[1..n] also returned by that routine. On output, only x[1..n] is modified,
to an improved set of values.

{
void lubksb(float **a, int n, int *indx, float b[]);
int j,i;
double sdp;
float *r;
r=vector(1l,n);
for (i=1;i<=n;i++) { Calculate the right-hand side, accumulating
sdp = -b[il; the residual in double precision.
for (j=1;j<=n;j++) sdp += alil[j1=*x[j];
r[il=sdp;
}
lubksb(alud,n,indx,r); Solve for the error term,
for (i=1;i<=n;i++) x[i] -= r[i]; and subtract it from the old solution.
free_vector(r,1,n);
}

You should note that the routine 1udcmp in §2.3 destroys the input matrix as
it LU decomposesit. Since iterative improvement requires both the original matrix
and its LU decomposition, youwill need to copy A before calling ludcmp. Likewise
lubksb destroys b in obtaining X, so make a copy of b also. If you don't mind
this extra storage, iterative improvement is highly recommended: It is a process
of order only N2 operations (multiply vector by matrix, and backsubstitute — see
discussion following equation 2.3.7); it never hurts; and it can really give you your
money’s worth if it saves an otherwise ruined solution on which you have already
spent of order N3 operations.

You can call mprove several timesin succession if you want. Unless you are
starting quite far from the true solution, one call is generally enough; but a second
call to verify convergence can be reassuring.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.5 Iterative Improvement of a Solution to Linear Equations 57

More on lIterative Improvement

It isilluminating (and will be useful later in the book) to give a somewhat more solid
analytical foundation for equation (2.5.4), and also to give some additional results. Implicitin
the previous discussion was the notion that the solution vector x + dx has an error term; but
we neglected the fact that the LU decomposition of A isitself not exact.

A different analytical approach starts with some matrix By that is assumed to be an
approximate inverse of the matrix A, so that By - A is approximately the identity matrix 1.
Define the residual matrix R of By as

R=1-By-A (25.5)
which is supposed to be “small” (we will be more precise below). Note that therefore

Bo-A=1-R (2.5.6)
Next consider the following formal manipulation:

A=A By By)=(A""-By")-Bo=(Bo-A)""-Bo
. - (25.7)
=(1-R)""-By=(1+R+R*+R*+...)-By

We can define the nth partial sum of the last expression by
B,=(1+R+---+R") By (25.8)

0 that Boo — A7, if the limit exists.
It now is straightforward to verify that eguation (2.5.8) satisfies some interesting
recurrence relations. Asregards solving A - x = b, where x and b are vectors, define

Xn =Bn b (25.9)
Then it is easy to show that
X7L+1 = Xn + BO : (b - A - Xn) (2510)

This is immediately recognizable as equation (2.5.4), with —dX = X, +1 — X», and with By
taking the role of A=, We see, therefore, that equation (2.5.4) does not require that the LU
decomposition of A be exact, but only that the implied residua R be small. Inrough terms, if
the residual is smaller than the square root of your computer’s roundoff error, then after one
application of equation (2.5.10) (that is, going from X, = By - b to x;) thefirst neglected term,
of order R?, will be smaller than the roundoff error. Equation (2.5.10), like equation (2.5.4),
moreover, can be applied more than once, sinceit uses only By, and not any of the higher B’s.

A much more surprising recurrence which follows from equation (2.5.8) isone that more
than doubles the order n at each stage:

Boni1 =2B, —Bn-A-B, n=0,137... (25.11)

Repeated application of equation (2.5.11), from a suitable starting matrix By, converges
quadratically to the unknown inverse matrix A~ (see §9.4 for the definition of “quadrati-
cally”). Equation (2.5.11) goes by various names, including Schultz' s Method and Hotelling’s
Method; see Pan and Reif [1] for references. In fact, equation (2.5.11) is simply the iterative
Newton-Raphson method of root-finding (§9.4) applied to matrix inversion.

Before you get too excited about equation (2.5.11), however, you should notice that it
involves two full matrix multiplications at each iteration. Each matrix multiplication involves
N? adds and multiplies. But we already saw in §52.1-2.3 that direct inversion of A requires
only N3 adds and N3 multipliesin toto. Equation (2.5.11) is therefore practical only when
special circumstances allow it to be evaluated much more rapidly than is the case for general
matrices. We will meet such circumstances later, in §13.10.

In the spirit of delayed gratification, let us nevertheless pursue the two related issues:
When does the seriesin equation (2.5.7) converge; and what is a suitable initial guess By (if,
for example, an initiad LU decomposition is not feasible)?

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

58 Chapter 2. Solution of Linear Algebraic Equations

We can define the norm of a matrix as the largest amplification of length that it is
able to induce on a vector,

IR] = max RV (25.12)
V20 |V|
If welet equation (2.5.7) act on some arbitrary right-hand side b, as one wantsamatrix inverse
to do, it is obvious that a sufficient condition for convergence is

IR| < 1 (25.13)

Pan and Reif [1] point out that a suitable initial guess for By is any sufficiently small constant
e times the matrix transpose of A, that is,

Bo=eA” or R=1-€eA" A (2.5.14)

To see why thisis so involves concepts from Chapter 11; we give here only the briefest sketch:
AT . A is a symmetric, positive definite matrix, so it has real, positive eigenvalues. In its
diagonal representation, R takes the form

R=diag(l — e\, 1 —€Xa,..., 1 — eln) (2.5.15)

where all the \;’s are positive. Evidently any e satisfying 0 < € < 2/(max; A;) will give
IIR|| < 1. Itis not difficult to show that the optimal choice for ¢, giving the most rapid
convergence for equation (2.5.11), is

€ = 2/(max A; + min \;) (25.16)

Rarely does one know the eigervalues of AT - A in equation (2.5.16). Pan and Reif
derive severa interesting bounds, which are computable directly from A. The following
choices guarantee the convergence of B, asn — oo,

€< 1/ E a?k or €< 1/(maX E laij| X max E |aij|) (25.17)
i J
gk J i

The latter expression is truly aremarkable formula, which Pan and Reif derive by noting that
the vector norm in equation (2.5.12) need not be the usua L. norm, but can instead be either
the Lo (max) norm, or the L; (absolute value) norm. See their work for details.

Another approach, with which we have had some success, is to estimate the largest
eigenvalue statistically, by calculating s; = |A - v;|? for several unit vector v;’swith randomly
chosen directionsin N-space. The largest eigenvalue A can then be bounded by the maximum
of 2max s; and 2NVar(s;)/u(s:), where Var and p. denote the sample variance and mean,
respectively.

CITED REFERENCES AND FURTHER READING:

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §2.3.4, p. 55.

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), p. 74.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
85.5.6, p. 183.

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), Chapter 13.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.5, p. 437.

Pan, V., and Reif, J. 1985, in Proceedings of the Seventeenth Annual ACM Symposium on Theory
of Computing (New York: Association for Computing Machinery). [1]

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.6 Singular Value Decomposition 59

2.6 Singular Value Decomposition

Thereexists avery powerful set of techniquesfor dealing with sets of equations
or matricesthat are either singular or else numerically very closeto singular. In many
cases where Gaussian elimination and LU decomposition fail to give satisfactory
results, this set of techniques, known as singular value decomposition, or SVD,
will diagnose for you precisely what the problem is. In some cases, SVD will
not only diagnose the problem, it will also solve it, in the sense of giving you a
useful numerical answer, although, as we shall see, not necessarily “the” answer
that you thought you should get.

SVD isasothemethod of choicefor solving most linear | east-squares problems.
We will outline the relevant theory in this section, but defer detailed discussion of
the use of SVD in this application to Chapter 15, whose subject is the parametric
modeling of data.

SV D methodsare based on the following theorem of linear algebra, whose proof
isbeyond our scope: Any M x N matrix A whose number of rows M isgreater than
or equal to its number of columns N, can be written as the product of an M x N
column-orthogona matrix U, an N x N diagona matrix W with positive or zero
elements (the singular values), and the transpose of an NV x N orthogonal matrix V.
The various shapes of these matrices will be made clearer by the following tableau:

(2.6.1)

The matrices U and V are each orthogona in the sense that their columns are
orthonormal,

M

1<k<N
UiiUsn = 1o = 262
N
1<k<N
> VikVin = 6kn L en<N (26.3)

Jj=1

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

60 Chapter 2. Solution of Linear Algebraic Equations

or as a tableau,

u”? : U = vT : \4 E
g

3

=

8

- 1 -

o

S

X

(2.6.9 ;j

[\

SinceV is square, it is also row-orthonormat,- VT = 1. =

The SVD decomposition can also be carried out whén< N. In this case
the singular values); for j = M + 1,..., N are all zero, and the corresponding
columns ofU are also zero. Equatlon (2 6 2) then holds onlyAfon < M.

The decomposition (2.6.1) can always be done, no matter how singular thed
matrix is, and it is “almost” unique. That is to say, it is unique up to (i) making
the same permutation of the columnsléf elements ofV, and columns o¥ (or
rows ofVT), or (i) forming linear combinations of any columns dfandV whose
corresponding elements8f happen to be exactly equal. An importantconsequence
of the permutation freedom is that for the cage< N, a numerical algorithm for
the decomposition need not return zerg's for j = M +1,...,N; the N — M
zero singular values can be scattered among all posijiend, 2, ..., N.

At the end of this section, we give a routinssdcmp, that performs SVD on
an arbitrary matrixA, replacing it byU (they are the same shape) and giving back
W andV separately. The routinevdcmp is based on a routine by Forsythe et
al.[1], which is in turn based on the original routine of Golub and Reinsch, found, in
various forms, iri2-4] and elsewhere. These references include extensive discussio
of the algorithm used. As much as we dislike the use of black-box routines, we are
going to ask you to accept this one, since it would take us too far afield to cover
its necessary background material here. Suffice it to say that the algorithm is verns
stable, and that it is very unusual for it ever to misbehave. Most of the concepts thag
enter the algorithm (Householder reduction to bidiagonal form, diagonalization by
QR procedure with shifts) will be discussed further in Chapter 11.

If you are as suspicious of black boxes as we are, you will want to verify yourself 3
thatsvdcmp does what we say it does. Thatis very easy to do: Generate an arbitrary
matrix A, call the routine, and then verify by matrix multiplication that (2.6.1) and
(2.6.4) are satisfied. Since these two equations are the only defining requirements
for SVD, this procedure is (for the chosén) a complete end-to-end check.

Now let us find out what SVD is good for.

0 BOlBWY YLON

ﬁﬁqweo@/ueslsnomeup 0} [rews puas 1o ‘(Aju

0’9
(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

ﬁo) o]}

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

UON P!

TBouswy Y

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.6 Singular Value Decomposition 61

SVD of a Square Matrix

If the matrixA is square)N x N say, therlJ, V, andW are all square matrices
of the same size. Their inverses are also trivial to computandV are orthogonal,
so their inverses are equal to their transpo$¥sis diagonal, so its inverse is the
diagonal matrix whose elements are the reciprocals of the elemgntsrom (2.6.1)
it now follows immediately that the inverse &f is

A~ =V . [diag(1/w;)] - UT (2.6.5

The only thing that can go wrong with this construction is for one of ¢hgs

to be zero, or (numerically) for it to be so small that its value is dominated by

roundoff error and therefore unknowable. If more than one ofuthés have this

problem, then the matrix is even more singular. So, first of all, SVD gives you a

clear diagnosis of the situation.

Formally, thecondition numbebof a matrix is defined as the ratio of the largest

(in magnitude) of thav;'s to the smallest of thev;’s. A matrix is singular if its
condition number is infinite, and it id-conditionedif its condition number is too

large, that is, if its reciprocal approaches the machine’s floating-point precision (for

example, less that0 =6 for single precision oi0~'2 for double).
For singular matrices, the concepts miillspaceand range are important.
Consider the familiar set of simultaneous equations

A-x=b (2.6.6

whereA is a square matrixp andx are vectors. Equation (2.6.6) definksas a
linear mapping from the vector spaxéo the vector spach. If A is singular, then
there is some subspacexqfcalled the nullspace, that is mapped to zérox = 0.
The dimension of the nullspace (the number of linearly independent vectboet
can be found in it) is called theullity of A.

Now, there is also some subspacéddhat can be “reached” b, in the sense
that there exists somewhich is mapped there. This subspacé &f called the range
of A. The dimension of the range is called @k of A. If A is nonsingular, then its
range will be all of the vector spate so its rank isV. If A is singular, then the rank
will be less thanV. In fact, the relevant theorem is “rank plus nullity equals

What has this to do with SVD? SVD explicitly constructs orthonormal bases

for the nullspace and range of a matrix. Specifically, the column® efhose

same-numbered elements arenonzeraare an orthonormal set of basis vectors that

span the range; the columns\dfwhose same-numbered elemeunts arezeroare
an orthonormal basis for the nullspace.

Now let's have another look at solving the set of simultaneous linear equation

(2.6.6) in the case tha is singular. First, the set dfomogeneousquations, where
b = 0, is solved immediately by SVD: Any column & whose corresponding ;
is zero yields a solution.

When the vectob on the right-hand side is not zero, the important question is
whether it lies in the range & or not. If it does, then the singular set of equations
doeshave a solutiorx; in fact it has more than one solution, since any vector in

the nullspace (any column &f with a corresponding zere ;) can be added t&
in any linear combination.

S

T (129 10 WO U MmM//:dny

uononpoidal Jayun4 "asn feuosiad umo J1ay; 1oy Adoo Jaded auo axew 0} SIasn 18ulslUl J0) pajue.d S uoIssIwIad

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD
(5-80TEY-TZS-0 N9SI) ONILNINOD DIHILNIIDS 4O LYV IHL O NI S3dI03Y TvII4INNN woly obed sjdwes

) 610°8BpLqUIRI @ AIBSISN1084IP 0} [lewd puas Jo ‘(Ajuo eauswy YUON) £27/-2/8-008
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

2oo
5SS
2908
o U<
pd (2]

o
S =3
=2 ‘g
> <a
2229
Siz
255
: =

5

®

62 Chapter 2. Solution of Linear Algebraic Equations

If we want to single out one particular member of this solution-set of vectors as

a representative, we might want to pick the one with the smallest I¢x16]‘thHere is
how to find that vector using SVD: Simptgplacel /w ; by zero ifw; = 0. (Itis not
very often that one gets to s&t = 0!) Then compute (working from right to left)

x =V - [diag (1/w;)] - (UT - b) (2.6.7

This will be the solution vector of smallest length; the column¥ dhat are in the
nullspace complete the specification of the solution set.

Proof: Considefx + x|, wherex’ lies in the nullspace. Then, W ~' denotes
the modified inverse o with some elements zeroed,

X+X|=[V-W™ . U" b+
= V- W UT.- b+ VT .X) (2.6.8
=w .U b+ V"X

Here the first equality follows from (2.6.7), the second and third from the orthonor-
mality of V. If you now examine the two terms that make up the sum on the

right-hand side, you will see that the first one has nonzemmponents only where
w; # 0, while the second one, singéis in the nullspace, has nonzgroomponents
only wherew; = 0. Therefore the minimum length obtains for= 0, g.e.d.

If b is notin the range of the singular matéx then the set of equations (2.6.6)

has no solution. But here is some good newsb I§ not in the range oA, then
equation (2.6.7) can still be used to construct a “solution” vextorhis vectorx
will not exactly solveA - x = b. But, among all possible vectoxs it will do the
closest possible job in the least squares sense. In other words (2.6.7) finds

x which minimizes r =|A-x—b| (2.6.9

The number- is called theresidual of the solution.

The proof is similar to (2.6.8): Suppose we modifipy adding some arbitrary
x’. ThenA - x — b is modified by adding somb’ = A - x’. Obviouslyb’ is in
the range ofA. We then have

|A-x—b+b|=[U-W-VT).(V.W".U".b)—b+1|

=|U-W-W-U"—1)-b+Db|

:}U'[(W'Wfl—l)-UT-b+uT.b/]| (2.6.10

=|W-w-1).UT - b+U". b

Now, (W - W' — 1) is a diagonal matrix which has nonzereomponents only for
w; = 0, while U”'b’ has nonzerg components only fow; # 0, sinceb’ lies in the
range ofA. Therefore the minimum obtains ftr = 0, g.e.d.

Figure 2.6.1 summarizes our discussion of SVD thus far.

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.6 Singular Value Decomposition 63

AR

(€Y
null
space
of A .
solutions of
solutions of Alk=c
Alk=d
SVD “solution”
of Ak =c o4
range of A
- - = ‘
\
d ‘.C
SVD solution of
Alk=d
(b)

Figure 2.6.1. (8 A nonsingular matrix A maps a vector space into one of the same dimension. The
vector x is mapped into b, so that x satisfies the equation A - x = b. (b) A singular matrix A maps a
vector space into one of lower dimensionality, here a plane into a line, called the “range” of A. The
“nullspace” of A is mapped to zero. The solutions of A - x = d consist of any one particular solution plus
any vector in the nullspace, here forming aline parallel to the nullspace. Singular value decomposition
(SVD) selects the particular solution closest to zero, as shown. The point c lies outside of the range
of A, so A -x = c has no solution. SVD finds the least-squares best compromise solution, namely a
solution of A - x = ¢/, as shown.

In the discussion since equation (2.6.6), we have been pretending that a matrix
either is singular or else isn't. That is of course true analytically. Numerically,
however, the far more common situation is that some of the w;’s are very small
but nonzero, so that the matrix is ill-conditioned. In that case, the direct solution
methods of LU decomposition or Gaussian elimination may actually give aformal
solution to the set of equations (that is, a zero pivot may not be encountered); but
the solution vector may have wildly large components whose algebraic cancellation,
when multiplying by the matrix A, may give a very poor approximation to the
right-hand vector b. In such cases, the solution vector x obtained by zeroingthe

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

64 Chapter 2. Solution of Linear Algebraic Equations

small w;’s and then using equation (2.6.7) is very often better (in the sense of the
residual |A - x — b| being smaller) than boththe direct-method solution andthe SVD
solution where the small w;’s are left nonzero.

It may seem paradoxical that this can be so, since zeroing a singular value
corresponds to throwing away one linear combination of the set of equations that
we are trying to solve. The resolution of the paradox is that we are throwing away
precisely a combination of equationsthat is so corrupted by roundoff error asto be at
best useless; usually it is worse than useless since it “pulls’ the solution vector way
off towards infinity along some direction that is aimost a nullspace vector. In doing
this, it compounds the roundoff problem and makes the residua |A - x — b| larger.

SVD cannot be applied blindly, then. You have to exercise some discretion in
deciding at what threshold to zero the small w ;’s, and/or you have to have some idea
what size of computed residual |A - x — b| is acceptable.

As an example, here is a “backsubstitution” routine svbksb for evaluating
equation (2.6.7) and obtaining a solution vector x from a right-hand side b, given
that the SVD of amatrix A has already been calculated by acall to svdcmp. Note
that this routine presumes that you have already zeroed the small w ;’s. It does not
do this for you. If you haven'tzeroed the small w;'s, then this routine is just as
ill-conditioned as any direct method, and you are misusing SVD.

#include "nrutil.h"

void svbksb(float **u, float w[], float **v, int m, int n, float b[], float x[])
Solves A-X = B for a vector X, where A is specified by the arraysu[1..m] [1..n], w[1..n],
v[1..n][1..n] asreturned by svdcmp. m and n are the dimensions of a, and will be equal for
square matrices. b[1..m] is the input right-hand side. x[1..n] is the output solution vector.
No input quantities are destroyed, so the routine may be called sequentially with different b's.

int jj,j,i;
float s,*tmp;

tmp=vector(1l,n);

for (j=1;j<=n;j++) { Calculate UT B.
s=0.0;
if (wljl) { Nonzero result only if w; is nonzero.
for (i=1;i<=m;i++) s += ulil[j1*b[i];
s /= w[jl; This is the divide by w;.
}
tmp[jl=s;
}
for (j=1;j<=n;j++) { Matrix multiply by V' to get answer.
5=0.0;
for (jj=1;3j<=n;jj++) s += v[j1[jjI*tmpljjl;
x[jl=s;
}

free_vector(tmp,1,n);

Note that a typical use of svdcmp and svbksb superficially resembles the
typical use of ludcmp and lubksb: In both cases, you decompose the left-hand
matrix A just once, and then can use the decomposition either once or many times
with different right-hand sides. The crucial differenceisthe*editing” of the singular
values before svbksb is called:

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

2.6 Singular Value Decomposition 65

#define N ...
float wmax,wmin,**a,**u,*w,**v,*b,*x;
int 1i,j;
for(i=1;i<=N;i++) Copy a into u if you don't want it to be de-
for j=1;j<=N;j++) stroyed.
uli] [j1=alil [j]1;
svdemp (u,N,N,w,v) ; SVD the square matrix a.
wmax=0.0; Will be the maximum singular value obtained.

for(j=1;j<=N;j++) if (w[j] > wmax) wmax=w[j];

This is where we set the threshold for singular values allowed to be nonzero. The constant
is typical, but not universal. You have to experiment with your own application.
wmin=wmax*1.0e-6;

for(j=1;j<=N;j++) if (w[j]l < wmin) w[j]=0.0;

svbksb(u,w,v,N,N,b,x); Now we can backsubstitute.

SVD for Fewer Equations than Unknowns

If you have fewer linear equations M than unknowns N, then you are not
expecting a unique solution. Usually there will be an N — M dimensional family
of solutions. If you want to find this whole solution space, then SVD can readily
do the job.

The SVD decomposition will yield N — M zero or negligible w;’s, since
M < N. There may be additional zero w;’s from any degeneracies in your A
equations. Be sure that you find this many small w;'s, and zero them before calling
svbksb, which will give you the particular solution vector x. Asbefore, the columns
of V corresponding to zeroed w ;'s are the basis vectors whose linear combinations,
added to the particular solution, span the solution space.

SVD for More Equations than Unknowns

This situation will occur in Chapter 15, when we wish to find the |east-squares
solution to an overdetermined set of linear equations. In tableau, the equations
to be solved are

A Ix|=1b (2.6.11)

The proofs that we gave above for the square case apply without modification
to the case of more equations than unknowns. The |east-squares solution vector X is

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

66 Chapter 2. Solution of Linear Algebraic Equations

given by (2.6.7), which, with nonsguare matrices, looks like this,

x| = Vv | diag@ jw;) | - uT b

(2.6.12)

In general, the matrix W will not be singular, and no w ;s will need to be
set to zero. Occasionally, however, there might be column degeneraciesin A. In
this case you will need to zero some small w; values after al. The corresponding
column in V gives the linear combination of x’s that is then ill-determined even by
the supposedly overdetermined set.

Sometimes, although you do not need to zero any w;’s for computational
reasons, you may nevertheless want to take note of any that are unusualy small:
Their corresponding columnsinV arelinear combinationsof x’swhich areinsensitive
to your data. In fact, you may then wish to zero these w ;'s, to reduce the number of
free parametersin the fit. These matters are discussed more fully in Chapter 15.

Constructing an Orthonormal Basis

Suppose that you have N vectors in an M-dimensional vector space, with
N < M. Then the N vectors span some subspace of the full vector space.
Often you want to construct an orthonormal set of N vectors that span the same
subspace. The textbook way to do this is by Gram-Schmidt orthogonalization,
starting with one vector and then expanding the subspace one dimension at a
time. Numerically, however, because of the build-up of roundoff errors, naive
Gram-Schmidt orthogonalization is terrible.

The right way to construct an orthonormal basis for a subspace is by SVD:
Form an M x N matrix A whose N columns are your vectors. Run the matrix
through svdcmp. The columns of the matrix U (which in fact replaces A on output
from svdcmp) are your desired orthonormal basis vectors.

You might also want to check the output w;'s for zero values. If any occur,
then the spanned subspace was not, in fact, N dimensional; the columns of U
corresponding to zero w;'s should be discarded from the orthonormal basis set.

(QR factorization, discussed in §2.10, also constructs an orthonormal basis,
see[5].)

Approximation of Matrices

Note that equation (2.6.1) can be rewritten to express any matrix A ;; as asum
of outer products of columns of U and rows of V7, with the “weighting factors”
being the singular values w;,

N
Ay =Y wp Ui Vi (2.6.13)
k=1

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.6 Singular Value Decomposition 67

If you ever encounter a situation where mostof the singular values w; of a
matrix A are very small, then A will be well-approximated by only afew termsinthe
sum (2.6.13). This meansthat you have to store only afew columnsof U and V (the
same k ones) and you will be able to recover, with good accuracy, the whole matrix.

Note also that it is very efficient to multiply such an approximated matrix by a
vector x: You just dot x with each of the stored columns of V, multiply the resulting
scalar by the corresponding w, and accumulate that multiple of the corresponding
column of U. If your matrix is approximated by a small number K of singular
values, then this computation of A - x takes only about K (M + N) multiplications,
instead of M N for the full matrix.

SVD Algorithm

Here is the algorithm for constructing the singular value decomposition of any
matrix. See §11.2-11.3, and aso [4-5], for discussion relating to the underlying
method.

#include <math.h>
#include "nrutil.h"

void svdcmp(float **a, int m, int n, float w[], float **v)
Given a matrix a[1..m] [1..n], this routine computes its singular value decomposition, A =
U-W-VT. The matrix U replaces a on output. The diagonal matrix of singular values W is out-
put as a vector w[1..n]. The matrix V (not the transpose V7 is output as v[1..n] [1..n].
{

float pythag(float a, float b);

int flag,i,its,j,jj,k,1,nm;

float anorm,c,f,g,h,s,scale,x,y,z,*rvl;

rvi=vector(1i,n);
g=scale=anorm=0.0; Householder reduction to bidiagonal form.
for (i=1;i<=n;i++) {
1=i+1;
rvi[i]=scalexg;
g=s=scale=0.0;
if (i <=m) {
for (k=i;k<=m;k++) scale += fabs(alk][i]);
if (scale) {
for (k=i;k<=m;k++) {
alk] [i] /= scale;
s += al[k] [il*al[k] [il;
}
f=ali] [i];
g = -SIGN(sqrt(s),f);
h=fx*g-s;
alil [i]l=f-g;
for (j=1;j<=n;j++) {
for (s=0.0,k=i;k<=m;k++) s += a[k][i]*alk][j];
f=s/h;
for (k=i;k<=m;k++) alk]l[j] += f*xalk][il;
}
for (k=i;k<=m;k++) al[k][i] *= scale;
}
}
wlil=scale *g;
g=s=scale=0.0;
if (1 <==m & i !'=n) {
for (k=1;k<=n;k++) scale += fabs(al[i][k]);
if (scale) {

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

68 Chapter 2. Solution of Linear Algebraic Equations

for (k=1;k<=n;k++) {
alil [k] /= scale;
s += alil [k]*a[il [k];
}
f=ali] [1];
g = -SIGN(sqrt(s),f);
h=f*g-s;
alil [11=f-g;
for (k=1;k<=n;k++) rvil[k]=al[i][k]/h;
for (j=1;j<=m;j++) {
for (s=0.0,k=1;k<=n;k++) s += al[j][k]l*al[i] [k];
for (k=l;k<=n;k++) aljllk] += s*rvi[k];
}
for (k=1;k<=n;k++) al[i] [k] *= scale;
}
}
anorm=FMAX (anorm, (fabs (w[i])+fabs(xv1[i])));
}
for (i=n;i>=1;i--) {
if (i < n) {
if (g) {
for (j=1;j<=n;j++) Double division to avoid possible underflow.
v[jllil=(alil [j1/alil[11)/g;
for (j=1;j<=n;j++) {
for (s=0.0,k=1;k<=n;k++) s += ali] [k]l*v[k][j];
for (k=1;k<=n;k++) v[k][j] += s*v[k][il;

Accumulation of right-hand transformations.

}
}
for (j=1;j<=n;j++) v[il[jl=v[jl1[i]=0.0;

}
v[il [i]=1.0;

g=rvi[i];
1=1;
}
for (i=IMIN(m,n);i>=1;i--) { Accumulation of left-hand transformations.
1=i+1;
g=wlil;
for (j=1;j<=n;j++) alil[j1=0.0;
if (g) {
g=1.0/g;
for (j=1;j<=n;j++) {
for (s=0.0,k=1;k<=m;k++) s += al[k][i]l*al[k][j];
f=(s/alil[i])*g;
for (k=i;k<=m;k++) alk][jl += f*alk][il;
}
for (j=i;j<=m;j++) aljlli] *= g;
} else for (j=i;j<=m;j++) aljl[il=0.0;
++a[i] [i];
}
for (k=n;k>=1;k--) { Diagonalization of the bidiagonal form: Loop over
for (its=1;its<=30;its++) { singular values, and over allowed iterations.
flag=1;
for (1=k;1>=1;1--) { Test for splitting.
nm=1-1; Note that rvi[1] is always zero.
if ((float) (fabs(rvi[l])+anorm) == anorm) {
flag=0;
break;
}
if ((float) (fabs(w[nm])+anorm) == anorm) break;
}
if (flag) {
c=0.0; Cancellation of rv1[1], if 1 > 1.
s=1.0;

for (i=l;i<=k;i++) {

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

2.6 Singular Value Decomposition 69

f=s*rv1[i];
rvi[il=c*rvi[i];
if ((float) (fabs(f)+anorm) == anorm) break;

g=wlil;

h=pythag(f,g);

wlil=h;

h=1.0/h;

c=gxh;

s = —-fxh;

for (j=1;j<=m;j++) {
y=alj] [om];
z=a[j1[i];

al[j] [nm]=y*c+z*s;
aljl [il=z*c-y*s;

}
}
}
z=w[k];
if (1 == k) { Convergence.
if (z < 0.0) { Singular value is made nonnegative.
wlk] = -z;
for (j=1;j<=n;j++) v[jllk] = -v[j]1[k];
}
break;
}
if (its == 30) nrerror("no convergence in 30 svdcmp iterations");
x=w[1l]; Shift from bottom 2-by-2 minor.
nm=k-1;
y=w[nm] ;
g=rv1[nm];
h=rvi1[k];

f=((y-z)*(y+z)+(g-h) *(g+h)) / (2. 0%hx*y) ;
g=pythag(f,1.0);
f=((x-2z) * (x+z) +h* ((y/ (£+SIGN(g,£)))-h)) /x;
c=s5=1.0; Next QR transformation:
for (j=1;j<=nm;j++) {
i=j+1;
g=rvi[il;
y=wlil;
h=s*g;
g=c*g;
z=pythag(f,h);
rvi[jl=z;
c=f/z;
s=h/z;
f=x*c+g*s;
g = gxc-x*s;
h=y*s;
y *=c;
for (jj=1;jj<=n;jj++) {
x=v[jjl[j];
z=v[jjl[i];
v[jjl[jI1=x*ct+zxs;
v[jjl [i]=z*c-xx*s;
}
z=pythag(f,h);
wljl=z; Rotation can be arbitrary if z = 0.
if (2) {
z=1.0/z;
c=f*z;
s=hx*z;
}
f=cxgt+s*y;
X=C*y-S*g;

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

70 Chapter 2. Solution of Linear Algebraic Equations

for (jj=1;jj<=m;jj++) {
y=aljjl[j];
z=al[jjl[i];
aljjl[jl=y*ct+zx*s;
aljjl[il=z*c-y*s;
}
}
rvi[1]=0.0;
rvi[k]=£f;
wlk]l=x;
}
}

free_vector(rvi,1,n);

#include <math.h>
#include "nrutil.h"

float pythag(float a, float b)
Computes (a? + b2)!/2 without destructive underflow or overflow.

float absa,absb;

absa=fabs(a);

absb=fabs(b) ;

if (absa > absb) return absa*sqrt(1.0+SQR(absb/absa));

else return (absb == 0.0 ? 0.0 : absb*sqrt(1.0+SQR(absa/absb)));

(Double precision versions of svdcmp, svbksb, and pythag, named dsvdcmp,
dsvbksb, and dpythag, are used by the routine ratlsq in §5.13. You can easily
make the conversions, or else get the converted routines from the Numerical Recipes
diskette.)

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §8.3 and Chapter 12.

Lawson, C.L., and Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ:
Prentice-Hall), Chapter 18.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9. [1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. Il of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter 1.10 by G.H. Golub and C. Reinsch. [2]

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S.I.A.M.), Chapter 11. [3]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
86.7. [4]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §5.2.6. [5]

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

2.7 Sparse Linear Systems 71

2.7 Sparse Linear Systems

A system of linear equationsis called sparseif only arelatively small number
of its matrix elements a;; are nonzero. It is wasteful to use general methods of
linear algebra on such problems, because most of the O(N) arithmetic operations
devoted to solving the set of equations or inverting the matrix involve zero operands.
Furthermore, you might wish to work problems so large as to tax your available
memory space, and it is wasteful to reserve storage for unfruitful zero elements.
Note that there are two distinct (and not always compatible) goals for any sparse
matrix method: saving time and/or saving space.

We have already considered one archetypal sparse form in §2.4, the band
diagonal matrix. In the tridiagonal case, e.g., we saw that it was possible to save
both time (order N instead of N?) and space (order N instead of N2). The
method of solution was not different in principle from the general method of LU
decomposition; it wasjust applied cleverly, and with due attention to the bookkeeping
of zero elements. Many practical schemesfor dealing with sparse problems have this
same character. They are fundamentally decomposition schemes, or else elimination
schemes akin to Gauss-Jordan, but carefully optimized so asto minimize the number
of so-caled fill-ins, initially zero elements which must become nonzero during the
solution process, and for which storage must be reserved.

Direct methods for solving sparse equations, then, depend crucialy on the
precise pattern of sparsity of the matrix. Patterns that occur frequently, or that are
useful as way-stations in the reduction of more general forms, already have special
names and special methods of solution. We do not have space here for any detailed
review of these. References listed at the end of this section will furnish you with an
“in” to the specialized literature, and the following list of buzz words (and Figure
2.7.1) will at least let you hold your own at cocktail parties:

tridiagonal

band diagonal (or banded) with bandwidth A
band triangular

block diagonal

block tridiagonal

block triangular

cyclic banded

singly (or doubly) bordered block diagonal
singly (or doubly) bordered block triangular
singly (or doubly) bordered band diagonal
singly (or doubly) bordered band triangular
other (1)

You should also be aware of some of the specia sparse forms that occur in the
solution of partia differential equationsin two or more dimensions. See Chapter 19.

If your particular pattern of sparsity is not a simple one, then you may wish to
try an analyze/factorize/operafmckage, which automates the procedure of figuring
out how fill-ins are to be minimized. The analyzestage is done once only for each
pattern of sparsity. The factorizestage is done once for each particular matrix that
fits the pattern. The operatestage is performed once for each right-hand side to

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

72 Chapter 2. Solution of Linear Algebraic Equations

Zeros

Zeros Zeros

4
1]
1[4 0]
(11

(d) (e)
(9 (h) 0]
N
I:|I:|I:| = (|
il -
0 O |_—,.|I:|I:|
0 DDEElI:IE

o 0o

0) ®

Figure 2.7.1. Some standard formsfor sparse matrices. (a) Band diagonal; (b) block triangular; (c) block
tridiagonal; (d) singly bordered block diagonal; (e) doubly bordered block diagonal; (f) singly bordered
block triangular; (g) bordered band-triangular; (h) and (i) singly and doubly bordered band diagond; (j)
and (k) other! (after Tewarson) [1].

be used with the particular matrix. Consult [2,3] for references on this. The NAG
library [4] has an analyze/factorize/operate capability. A substantial collection of
routines for sparse matrix calculation is also available from IMSL [5] as the Yale
Soarse Matrix Package [6].

You should be aware that the special order of interchanges and eliminations,

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvIIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-886T (D) WbuLAdoD

2.7 Sparse Linear Systems 73

prescribed by a sparse matrix method so as to minimize fill-ins and arithmetic
operations, generally acts to decrease the method’s numerical stability as compared
to, e.g., regular LU decomposition with pivoting. Scaling your problem so as to
make its nonzero matrix elements have comparable magnitudes (if you can do it)
will sometimes ameliorate this problem.

In the remainder of this section, we present some concepts which are applicable
to some general classes of sparse matrices, and which do not necessarily depend on
details of the pattern of sparsity.

Sherman-Morrison Formula

Suppose that you have aready obtained, by herculean effort, the inverse matrix
A~! of a square matrix A. Now you want to make a “small” change in A, for
example change one element a;;, or a few elements, or one row, or one column.
Is there any way of calculating the corresponding change in A ~! without repeating
your difficult labors? Yes, if your change is of the form

A —- (A+uv) (27.1)

for some vectorsu and v. If u is aunit vector e;, then (2.7.1) adds the components
of v to theith row. (Recall that u ® v isamatrix whose ¢, jth element is the product
of the ith component of u and the jth component of v.) If v isaunit vector e ;, then
(2.7.1) adds the components of u to the jth column. If both u and v are proportional
to unit vectors e; and e; respectively, then aterm is added only to the element a ; ;.

The Sherman-Morrison formulagivestheinverse (A +u®v) ~1, and is derived
briefly as follows:

A+uev)'=1+Auev) AT

=1-Atuev+A Tt ugv- ATt uev—..)-A"!

AP AT uRV-ATI AN L)

A7t u)@ (v-ATh

=A"1
14+ A

(2.7.2)
where

A=v-Al.u (2.7.3)

The second line of (2.7.2) is aformal power series expansion. In the third line, the
associativity of outer and inner products is used to factor out the scalars .

The use of (2.7.2) is this: Given A~ and the vectors u and v, we need only
perform two matrix multiplications and a vector dot product,

z=A"1u w=AYHYT.v A=v.z (2.7.4)
to get the desired change in the inverse

ZR®W

Al Al —
- 1T+ A

(2.7.5)

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvIIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-886T (D) WbuLAdoD

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

74 Chapter 2. Solution of Linear Algebraic Equations

The whole procedure requires only 3V 2 multiplies and a like number of adds (an
even smaller number if u or v is a unit vector).

The Sherman-Morrison formula can be directly applied to a class of sparse
problems. If you already have a fast way of calculating the inverse of A (eg., a
tridiagonal matrix, or some other standard sparse form), then (2.7.4)—(2.7.5) alow
you to build up to your related but more complicated form, adding for example a
row or column at atime. Notice that you can apply the Sherman-Morrison formula
more than once successively, using at each stage the most recent update of A !
(equation 2.7.5). Of course, if you have to modify every row, then you are back to
an N3 method. The constant in front of the N3 is only afew times worse than the
better direct methods, but you have deprived yourself of the stabilizing advantages
of pivoting — so be careful.

For some other sparse problems, the Sherman-Morrison formula cannot be
directly applied for the simple reason that storage of the whole inverse matrix A ~!
is not feasible. If you want to add only a single correction of the form u ® v,
and solve the linear system

(A+u®v)-x=hb (2.7.6)

then you proceed as follows. Using the fast method that is presumed available for
the matrix A, solve the two auxiliary problems

A-y=hb A-z=u (2.7.7)
for the vectorsy and z. In terms of these,
y |y
X=y [1+(v-z)} z (2.7.8)

as we see by multiplying (2.7.2) on the right by b.
Cyclic Tridiagonal Systems

So-called cyclic tridiagonal systems occur quite frequently, and are a good
example of how to use the Sherman-Morrison formulain the manner just described.
The equations have the form

by ¢ 0 .- B 1 1
az by ca - T2 T2
— | 279
an—1 bv-1 cn-1 TN_1 TN-1
« ce 0 an bN TN N

Thisis atridiagona system, except for the matrix elements « and /3 in the corners.
Forms like this are typically generated by finite-differencing differential equations
with periodic boundary conditions (§19.4).

We use the Sherman-Morrison formula, treating the system as tridiagonal plus
acorrection. In the notation of equation (2.7.6), define vectors u and v to be

0 1
0 0

u= | : V= (2.7.10)
0 0

Q
s
\
2

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvIIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-886T (D) WbuLAdoD

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

2.7 Sparse Linear Systems 75

Here ~ is arbitrary for the moment. Then the matrix A is the tridiagonal part of the
matrix in (2.7.9), with two terms modified:

L =b1—7, v =bn —afB/y (2.7.11)

We now solve equations (2.7.7) with the standard tridiagonal algorithm, and then
get the solution from equation (2.7.8).

Theroutine cyclic below implements this algorithm. We choose the arbitrary
parameter v = —b, to avoid loss of precision by subtraction in the first of equations
(2.7.11). In the unlikely event that this causes loss of precision in the second of
these equations, you can make a different choice.

#include "nrutil.h"

void cyclic(float a[], float b[], float c[], float alpha, float beta,

float r[], float x[], unsigned long n)
Solves for a vector x[1..n] the “cyclic” set of linear equations given by equation (2.7.9). a,
b, c, and r are input vectors, all dimensioned as [1..n], while alpha and beta are the corner
entries in the matrix. The input is not modified.
{

void tridag(float a[l, float b[], float c[], float r[], float ul],

unsigned long n);
unsigned long i;
float fact,gamma,*bb,*u,*z;

if (n <= 2) nrerror("n too small in cyclic");

bb=vector(1l,n);

u=vector(1,n);

z=vector(1,n);

gamma = -b[1]; Avoid subtraction error in forming bb[1].

bb[1]=b[1]-gamma; Set up the diagonal of the modified tridi-

bb[n]=b[n]-alpha*beta/gamma; agonal system.

for (i=2;i<n;i++) bb[il=b[i];

tridag(a,bb,c,r,x,n); Solve A-x =.

u[1]=gamma; Set up the vector u.

u[n]=alpha;

for (i=2;i<n;i++) ul[i]=0.0;

tridag(a,bb,c,u,z,n); Solve A -z = u.

fact=(x[1]+beta*x[n]/gamma)/ Form v-x/(1 +v-2z).
(1.0+z[1]+beta*z[n] /gamma) ;

for (i=1;i<=n;i++) x[i] -= fact*z[i]; Now get the solution vector X.

free_vector(z,1,n);

free_vector(u,1,n);

free_vector(bb,1,n);

Woodbury Formula

If you want to add more than a single correction term, then you cannot use (2.7.8)
repeatedly, since without storing a new A~! you will not be able to solve the auxiliary
problems (2.7.7) efficiently after thefirst step. Instead, you need the Woodbury formula, which
is the block-matrix version of the Sherman-Morrison formula,

(A+U-vH!

(2.7.12)
—A - [A’l U-@QeVTAT oy hovT At

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvIIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-886T (D) WbuLAdoD

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

76 Chapter 2. Solution of Linear Algebraic Equations

Here A is, as usuad, an N x N matrix, while U and V are N x P matrices with P < N
and usually P <« N. Theinner piece of the correction term may become clearer if written
as the tableau,

U i+vioaTtoul VT (2.7.13)

where you can see that the matrix whose inverseisneeded isonly P x P rather than N x N.

The relation between the Woodbury formulaand successive applications of the Sherman-
Morrison formulaisnow clarified by noting that, if U isthe matrix formed by columns out of the
P vectorsuy, ..., up,andV isthe matrix formed by columns out of the P vectorsvi, ..., vp,

U= |Ui| - |Up V=|Vi| - |Vp (2.7.14)

then two ways of expressing the same correction to A are

P
(A Y u® vk> =(A+U-VT") (2.7.15)
k=1

(Note that the subscripts on u and v do not denote components, but rather distinguish the
different column vectors.)

Equation (2.7.15) reveals that, if you have A~" in storage, then you can either make the
P corrections in one fell swoop by using (2.7.12), inverting a P x P matrix, or else make
them by applying (2.7.5) P successive times.

If you don’t have storage for A~!, then you must use (2.7.12) in the following way:
To solve the linear equation

(A +) w® vk> x=b (2.7.16)

k=1

first solve the P auxiliary problems

A-z21 =U
A-Zo = U2
(2.7.17)
A-zZp = Up
and construct the matrix Z by columns from the z's obtained,
Z=lzi|---|zp (2.7.18)

Next, do the P x P matrix inversion
H=@1+V"'.2)™! (2.7.19)

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvIIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-886T (D) WbuLAdoD

2.7 Sparse Linear Systems 7

Finally, solve the one further auxiliary problem
A-y=Db (2.7.20)
In terms of these quantities, the solution is given by

X=y—2Z [H v y)] (2.7.21)

Inversion by Partitioning

Once in a while, you will encounter a matrix (not even necessarily sparse)
that can be inverted efficiently by partitioning. Suppose that the N x N matrix
A is partitioned into

A= {g g} (2.7.22)

where P and S are square matrices of size p x p and s x s respectively (p + s = N).
The matrices Q and R are not necessarily square, and have sizesp x s and s X p,
respectively.

If the inverse of A is partitioned in the same manner,

Al = F (?1 (2.7.23)
R S

then P, Q, R, S, which have the same sizes as P, Q, R, S, respectively, can be
found by either the formulas

P=P-Q-S!.R)!

Q=-(P-Q-s"R)" Q-5

- (2.7.24)
R=—(S'R.-(P-Q-S'.R)!
S=S'4+(S'R)-(P-Q-S'-R)'-(Q-5}
or else by the equivalent formulas
P=P'+(P'Q (S-R-P Q" (RP
Q=-(P'-Q-(S-R-P.Q"
(2.7.25)

R=—(S—-R-P1.Q ' (R-P
S=(S-R-P1.Q)!

The parentheses in equations (2.7.24) and (2.7.25) highlight repeated factors that
you may wish to compute only once. (Of course, by associativity, you can instead
do the matrix multiplications in any order you like.) The choice between using
equation (2.7.24) and (2.7.25) depends on whether you want P or S to have the
simpler formula; or on whether the repeated expression (S—R-P - Q) ! iseasier

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvIIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-886T (D) WbuLAdoD

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

78 Chapter 2. Solution of Linear Algebraic Equations

to calculate than the expression (P — Q - S™! - R)~!; or on the relative sizes of P
and S; or on whether P~! or S™! is aready known.

Another sometimes useful formula is for the determinant of the partitioned
matrix,

det A = detPdet(S—R-P™'.Q) =detSdet(P-Q-S™'-R) (27.26)

Indexed Storage of Sparse Matrices

We have already seen (§2.4) that tri- or band-diagonal matrices can be stored in acompact
format that allocates storage only to elements which can be nonzero, plus perhaps afew wasted
locations to make the bookkeeping easier. What about more general sparse matrices? When a
sparse matrix of dimension N x N contains only afew times N nonzero elements (a typical
case), it is surely inefficient — and often physically impossible — to allocate storage for all
N? elements. Even if one did allocate such storage, it would be inefficient or prohibitive in
machine time to loop over al of it in search of nonzero elements.

Obviously some kind of indexed storage scheme isrequired, one that stores only nonzero
matrix elements, along with sufficient auxiliary information to determine where an element
logically belongs and how the various elements can be looped over in common matrix
operations. Unfortunately, there is no one standard scheme in general use. Knuth[7] describes
one method. The Yale Sparse Matrix Package[6] and ITRPACK [8] describe several other
methods. For most applications, we favor the storage scheme used by PCGPACK [9], which
isamost the same as that described by Bentley [10], and also similar to one of the Yale Sparse
Matrix Package methods. The advantage of this scheme, which can be called row-indexed
sparse storage mode, isthat it requires storage of only about two times the number of nonzero
matrix elements. (Other methods can require as much as three or five times.) For simplicity,
we will treat only the case of square matrices, which occurs most frequently in practice.

To represent a matrix A of dimension N x N, the row-indexed scheme sets up two
one-dimensional arrays, call them sa and ija. Thefirst of these stores matrix element values
in single or double precision asdesired; the second storesinteger values. The storagerulesare:

e Thefirst NV locations of sa store A’sdiagonal matrix elements, in order. (Notethat
diagonal elements are stored even if they are zero; thisis at most a dight storage
inefficiency, since diagonal elements are nonzero in most realistic applications.)

e Each of thefirst N locations of ija stores the index of the array sa that contains
the first off-diagonal element of the corresponding row of the matrix. (If there are
no off-diagonal elements for that row, it is one greater than the index in sa of the
most recently stored element of a previous row.)

e Location 1 of ijaisawaysequal to N + 2. (It can beread to determine N.)

e Location N + 1 of ija isone greater than theindex in sa of the last off-diagonal
element of the last row. (It can be read to determine the number of nonzero
elements in the matrix, or the number of elements in the arrays sa and ija.)
Location N + 1 of sa is not used and can be set arbitrarily.

e Entriesin sa at locations > N + 2 contain A’s off-diagonal values, ordered by
rows and, within each row, ordered by columns.

e Entriesinija atlocations> NN +-2 contain the column number of the corresponding
element in sa.

While these rules seem arbitrary at first sight, they result in a rather elegant storage

scheme. As an example, consider the matrix

(2.7.27)

cocoocow
S
oo
ocowvwoo
aNoO OO

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvIIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-886T (D) WbuLAdoD

2.7 Sparse Linear Systems 79

In row-indexed compact storage, matrix (2.7.27) is represented by the two arrays of length
11, as follows

index k 1 2 3 4 5 6 7 8 9 |10 | 11

ijalk] 7 8 8 (10 | 11 | 12 3 2 4 5 4

salk] 3. |4 |5 0. 5. x | 1. |7 |09 2. 6.

(2.7.28)

Here z is an arbitrary value. Notice that, according to the storage rules, the value of N
(namely 5) is ijal[1]1-2, and the length of each array is ijalijal[1]1-11-1, namely 11.
The diagonal element in row i is sali], and the off-diagonal elements in that row are in
sa[k] where k loops from ija[i] to ija[i+1]-1, if the upper limit is greater or equal to
the lower one (as in C's for loops).

Hereisaroutine, sprsin, that convertsamatrix from full storage mode into ro