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Abstract 

Inter-domain path computation, or the ability to 
compute end-to-end paths across multiple domains, is 
the next step toward wide deployment of a distributed 
control plane with support for traffic engineering. A 
key enabler to achieve this goal is the introduction of a 
Path Computation Element (PCE) in each domain. 
There are various ways these elements can collaborate 
to compute an end-to-end path; of particular interest to 
us in this paper is cooperative path computation, a 
scheme where PCEs exchange path information in the 
context of a specific end-to-end path computation 
instance, often prior to signaling the path. We show 
that depending on the information available to each 
PCE, cooperation can take one of two forms, which we 
call model-based and ad hoc. We demonstrate that 
model-based cooperation is essentially a multistage 
decision problem, and offer a probabilistic analysis 
which we believe is the key to understanding the 
problem and developing efficient inter-domain path 
computation heuristics. In particular, we argue that 
having an estimate of the blocking probability in each 
domain can be helpful in determining the path 
computation effort needed to find an end-to-end path.

1. Introduction 

Distributed control plane technologies such as 
Multiprotocol Label Switching (MPLS) and its 
generalized version GMPLS [1], [2] are opening the 

door to an array of end-to-end QoS-based services that 
were previously hard to provide over the shared 
Internet. The global adoption of service delivery using 
these technologies assumes that users can be provided 
connections with well-defined attributes that will not 
change over the service delivery period with changes 
in network or user population. Fundamental to this 
assumption is the ability to dynamically compute 
routes through the network that satisfy administrative, 
resource or other types of constraints. Constrained 
routing, or path computation, is an essential 
functionality in MPLS, GMPLS, or any control plane 
architecture with end-to-end performance objective. 

Following the “distributed intelligence” design 
philosophy of IP networks, the MPLS architecture [1] 
viewed path computation as a simple extension of the 
shortest path first (SPF) algorithm. Almost all MPLS 
implementations today run a constrained shortest path 
first (CSPF) algorithm that simply accepts or rejects 
the network links used in shortest path computation 
based on a set of boolean traffic engineering 
constraints. This early view of ‘on-board’ path 
computation has now been challenged in many ways. 

To begin with, path computation requests have 
become more complex since the early days of MPLS. 
With GMPLS being applicable to a wide variety of 
switching technologies such as packet, TDM and 
wavelength switching, path computation constraints 
are now more complex than simple bandwidth 
availability or administrative constraints in packet-
switched networks. For example, path computation in 
all-optical networks with end-to-end transparency may This work was supported by National Science Foundation grants 
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involve optical characteristics of the fiber links. 
Another example is computing diverse paths for end-
to-end protected services, where diversity must be 
satisfied with respect to all underlying switching layers 
(wavelength, fiber, duct…). This is a complex problem 
for which even heuristic algorithms are 
computationally intensive. Supporting these complex 
computation problems at every network node requires 
a large amount of computing power at all nodes. 

Another factor challenging the “on-board” path 
computation paradigm is today’s more mature and 
abstract view towards traffic engineering, which makes 
it less dependent on link-state routing. While link-state 
routing remains an important vehicle to share topology 
and resource information between network nodes, it 
should not be thought of as the only way to disseminate 
this information, and attention should be also given to 
a centralized view of traffic engineering where not all 
network nodes support routing, or not all network 
nodes are able to or decide to access or disseminate 
traffic engineering information through a link-state 
protocol. In such scenarios, even the basic topology 
and resource information needed for path computation 
can be unavailable to the node initiating a connection.  

Finally, the routing architecture of GMPLS is now 
challenged by the growing interest in GMPLS 
deployment across multiple domains. A domain is any 
collection of network elements within a common 
sphere of address management. Examples of domains 
include an OSPF area, an Autonomous System (AS) 
running a single instance of OSPF, and multiple 
autonomous systems within a single service provider’s 
network [3]. Establishing end-to-end connections 
across a large number of domains would be impractical 
if not impossible, without establishing a hierarchy 
across domains. As shown in Fig. 1, by separating the 
control plane into path computation and signaling 
planes these two functionalities can have different 
architectures with respect to hierarchy. Specifically, 
the path computation plane can have a hierarchical 
structure, allowing aggregation of traffic engineering 
information in each domain into compact models 
suitable for path computation (with aggregation 
applied at each level of hierarchy), and the signaling 
plane can retain its flat architecture and follow the 
(maybe loosely) computed path in a sequential manner. 
Hierarchical path computation is also consistent with 
the routing architecture and requirements set forth by 
ITU-T for Automatically Switched Optical Networks 
(ASON) [4], [5]. 

Because of the above reasons and other motivations 
listed in [3], there is a growing interest in a control 

plane element that is dedicated to path computation 
and can reside in or outside of a network element1.

Figure 1. Decomposition of the control plane into a flat signaling 
plane and a hierarchical path computation plane. 

Among the many applications and drivers for 
dedicated path computation elements, inter-domain 
path computation, i.e., finding end-to-end paths across 
multiple domains through collaboration between path 
computation elements, is probably the most important. 
In this paper, we are particularly interested in 
cooperative inter-domain path computation, where 
path computation elements in different domains 
participate in computing an end-to-end path, in full 
detail or loosely defined, often prior to signaling the 
path. The distinction about when PCEs in different 
domains collaborate is important, as every inter-
domain path computation indeed requires one form of 
collaboration among PCEs; however, not all these 
forms are considered to be cooperation, as we describe 
in the next section. Finally, our study is focused on 
computing a single path across multiple domains; 
therefore, problems such as computing disjoint paths 
across multiple domains are not considered here. 

The outline of the paper is as follows: In Section 2, 
we give an overview of cooperative path computation. 
Specifically, we show that cooperation can take one of 
two forms, which we refer to as model-based and ad 
hoc. Through an example we show how these two 
cooperation modes are different, and also the trade-offs 
for each mode. We study the model-based cooperation 
in Section 3. Here, we demonstrate through a 
probabilistic analysis that by distributing information 
about congestion, or more precisely blocking in each 
domain, end-to-end path computation can be made 
more efficient in terms of the overall path computation 
effort. We briefly discuss ad hoc cooperation in 
Section 4, just enough to demonstrate that the sizeable 
literature on ad hoc routing in wireless networks is also 

                                                       
1 At the time of this writing, the IETF Path Computation Element
(PCE) working group has finished defining the architectural 
requirements of a dedicated path computation element [3] and is 
developing a protocol to interface with the element. 

D
at

a 
pl

an
e 

Si
gn

al
in

g 
pl

an
e 

(fl
at

) 
Pa

th
 c

om
pu

ta
tio

n 
pl

an
e 

(h
ie

ra
rc

hi
ca

l) 

C
on

tro
l p

la
ne

 

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06) 
0-7695-2588-1/06 $20.00 © 2006 IEEE 



applicable to inter-domain path computation, and 
probably with a better performance, given the perfect 
medium (compared to wireless networks) available to 
PCEs to communicate with each other. Section 5 
concludes the paper with our final thoughts. 

2. Cooperative path computation 

Cooperative path computation is one of several 
possible ways that path computation elements in 
different domains can collaborate to compute an end-
to-end path. Consider an end-to-end path computation 
problem or instance, and assume that the detailed path 
information from the source node to the ingress of a 
certain domain (the “current domain”) is known2. We 
say a PCE in the current domain and a group of PCEs 
in other domains have cooperated when they exchange 
path computation information that would determine the 
path beyond the ingress to the next domain. For 
example, PCEs may cooperate to find the ingress to the 
next two domains, and once the path has reached the 
second domain ingress, they may cooperate again to 
find the subsequent domains. They may cooperate to 
find all domains along the path to destination, with full 
path information in each domain, or partial path 
information that will have to be expanded in each 
domain. What is common to all these scenarios is that a 
group of PCEs exchange information in response to a 
specific path computation instance, and generate path 
information that goes beyond the next domain ingress. 

Cooperation and its different forms can best be 
described through an example. Fig. 2 shows a scenario 
where a path computation problem has been resolved 
up to the ingress node A1 in domain A (perhaps a 
partial path has also been set up from the source node 
to A1), and the PCE in domain A (PCE-A) receives a 
request from A1 to further add to the path. In response,  

• PCE-A may compute the best path through 
domain A, which implicitly identifies the next 
domain and its ingress (B1 for example). There is 
no cooperation in this case, as PCE-A and other 
PCEs do not exchange any path information; in 
fact, the PCEs do not even collaborate in this case. 

                                                       
2 Domain ingress here refers to a network resource belonging to the 
domain that once determined, would make path computation through 
the domain independent of the path taken to reach the domain. For 
example, for a packet-switched domain the ingress is the node
through which a path enters the domain, but for a wavelength-
switched domain with optical transparency the ingress is the 
wavelength channel through which the path enters the domain, 
because one also needs to know the wavelength to be able to 
continue the path computation through the domain. 

• PCE-A may compute the best path through 
domain A, as well as the best path through the 
next domain (domain B), or even other domains 
all the way to the destination. The path 
information outside domain A may be as detailed 
as the complete list of all nodes and links, or may 
be less specific and include only the list of 
domains and their ingress and egress points. Since 
computing the path across other domains requires 
information from other domains, this is clearly an 
example of collaboration between PCEs; however, 
depending on how the path is computed it may 
define cooperation or not, as we describe next. 

Figure 2. Model-based and ad hoc cooperation examples. 

In the second case above, PCE-A may generate the 
path information in one of several ways: 

- It may generate a path based on topology and 
resource availability information disseminated by 
other PCEs before receiving the path computation 
request, through periodic or event-based 
exchanges between domains for example (push 
model). The level of detail for the generated path 
depends on the information available to PCE-A, 
and can range from a simple list of domains, to the 
full list of links leading to the destination. This is 
an example of collaboration but no cooperation: 
Although PCEs are exchanging information, the 
exchange is not in the context of a path 
computation instance, and the returned path is 
unilaterally decided by PCE-A. 

- It may compute a loosely defined path consisting 
of at least the next two domains (using a model of 
other domains made available as defined in the 
previous case), and then ask the PCEs in selected 
domains to return one or more expanded paths 
across their domains. For example, in Fig. 2, PCE-
A may first decide that domain B and domain C 
would be the next two domains on the way to the 
destination, using models of these domains 
available beforehand. Then, in order to select the 
best path through domain B, PCE-A asks the PCE 
in domain B (PCE-B) to return a set of acceptable 
paths (subject to the constraints specified for the 
end-to-end path) through domain B (e.g., shortest 
paths from B1 and B2 to C1 and C2). Once these 
intra-domain paths are collected, PCE-A possibly 

PCE-A PCE-B 

A B A1 B1

Path 
request

Incoming 
path request
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constructs a more detailed graph based on the 
returned paths, and computes and returns a 
detailed path going through domain A and B at 
least. This case is an example of model-based 
cooperation: The set of collaborating PCEs is first 
determined based on a model of other domains, 
and then PCEs exchange information to solve a 
specific path computation instance. 

- Finally, PCE-A may not have any information on 
other domains, or may decide not to use any 
information because it is out of date for example. 
In this case, PCE-A can ask all PCEs in reachable 
neighboring domains to work in parallel and return 
one or more paths to the destination (again subject 
to the constraints specified for the end-to-end 
path). For example, in Fig. 2, recognizing that the 
destination is not in domain A, PCE-A first tries to 
compute paths from A1 to every ingress to 
neighboring domains (nodes B1 and B2 in this 
case); assuming that both B1 and B2 are reachable 
(via paths p1 and p2 respectively), PCE-A then 
asks PCE-B for paths to the destination starting 
from B1 and B2. PCE-B repeats the process, and 
requests its own neighboring domains to return the 
best path to the destination. If PCE-B receives a 
path to destination, it will send the path back to 
PCE-A. PCE-A can then choose the best path to 
the destination among possibly multiple paths that 
it receives. This case is an example of ad-hoc 
cooperation: Unlike the previous case, the group 
of collaborating PCEs is not determined a priori,
but the PCEs still exchange information to solve a 
specific path computation instance. 

The choice between model-based or ad hoc 
cooperation is determined by several factors, including 
the number of domains, and more importantly whether 
domains exchange topology and resource information 
or not. Model-based cooperation clearly scales better, 
and perhaps is the only choice when the number of 
domains is large. Its performance largely depends on 
the topology and resource information available to 
each domain, more precisely, how detailed these 
models are, and how fast they are updated. Ad hoc 
cooperation on the other hand is best suited for smaller 
number of domains with no inter-domain topology and 
resource information exchange. 

It should be clear from the above example that 
cooperative path computation works best when PCEs 
in different domains can reach each other faster than 
the speed the network nodes can reach each other 
through signaling. As discussed, PCEs in different 
domains may form their own private network to 
exchange path information, try different paths, and 

cooperatively decide on an end-to-end path, all without 
unnecessary signaling attempts that would otherwise 
perturb the data plane and cause unnecessary updates 
to routing and traffic engineering information in each 
domain. Finally, in model-based cooperation PCEs 
must be able to exchange topology and resource 
information, most likely in an aggregate form, and 
update the information over time. One solution is to 
run a separate instance of a link-state protocol such as 
OSPF between PCEs in different domains and 
exchange domain information through opaque link-
state advertisements (LSAs) [8], [10]. 

3. Model-based cooperation 

In model-based cooperation, the domains and the 
order in which they are traversed are determined first, 
or known in advance through policies or configuration. 
As a result, the end-to-end path computation becomes a 
multistage decision problem, where each decision stage 
corresponds to selecting one of the possibly several 
inter-domain alternatives. Depending on what domains 
represent with regards to the switching technology 
(i.e., packet, time slot, wavelength, etc.) and routing 
scope (e.g., an OSPF area or an Autonomous System), 
inter-domain alternatives represent network nodes, 
links, or link resources such as time slots and 
wavelength channels connecting the domains. For 
example, for packet-switched domains representing 
OSPF areas, each inter-domain alternative corresponds 
to an area border router (ABR). For packet-switched 
domains representing autonomous systems, each inter-
domain alternative corresponds to a pair of 
autonomous system border routers (ASBRs) sitting at 
the endpoints of a link connecting the autonomous 
systems. For wavelength-switched domains, each inter-
domain alternative is a wavelength channel connecting 
the two optical switches at the inter-domain link 
endpoints. Fig. 3 illustrates these examples. 

Figure 3. Examples of inter-domain alternatives. 

Consider the scenario shown in Fig. 4, where the 
traversed domains are numbered from 0 to m 1. The 
source node S is located in domain 0 and the 
destination node D is located in domain m. Assume 
there are wi inter-domain alternatives for leaving 
domain i-1 to domain i. Further assume that a path 
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computation attempt through domain i fails with the 
probability of αi, i.e., given an arbitrary ingress and an 
arbitrary egress in domain i, there is a chance of αi that 
no path will be available between them. 

Figure 4. Path computation as a multistage decision problem. 

Define p(i,n) i=1,…,m, n=1,…,wi as the probability 
of reaching n inter-domain alternatives at stage i, i.e., 
after domain i-1 and before domain i. By definition, 
p(0,n)=1 for n=1 and p(0,n)=0 otherwise. Assuming 
there are k inter-domain alternatives at stage i-1, the 
conditional probability of reaching n alternatives at 
stage i has a binomial distribution with failure 
probability of αi-1

k. Thus, the unconditional probability 
p(i,n) can be expanded as 
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for i=1,…m and n=1,..,wi. Using (1), one can compute 
the distribution of the number of reachable inter-
domain alternatives at every stage, starting from the 
first stage. In particular, the distribution at stage m can 
be used to compute the probability of failure pf (or 
probability of success ps=1-pf) for the end-to-end path 
computation, as follows: 

=
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The distribution of reachable alternatives is 
binomial at the first stage, but gets more involved after 
each stage3. To gain better understanding of the 
dynamics of this distribution, i.e., how the distribution 
evolves from one inter-domain stage to the next, let us 
analyze a simple case where the number of inter-
domain alternatives (reachable and unreachable) at 
every stage is the same, i.e., w1=w2=…=wm=w. Let the 
(w+1)×1 vector pk=(p(k,0), p(k,1),…, p(k,w))T denote 
the distribution of the number of reachable alternatives 
at stage k. It follows from (1) that pk is the state vector 
of an unforced linear dynamical system with the state 
equation and initial condition given by 

                                                       
3 However, the conditional distribution, i.e., the distribution of the 
number of alternatives at stage i given the number of alternatives at 
stage i-1, remains binomial. 

mkkkk ,,1;11 == −− pAp  (3-a) 
T)0010(0 =p  (3-b) 

where the elements of the (w+1)×(w+1) state matrices 
Ak=[aijk] k=0,…,m-1 are given by 

wjwiCa ij
k

jiw
k

i
wijk ,...,0;,...,0;)1()( ==−= − αα  (3-c) 

with a0,0,k=1. We call the linear system in (3) the stage 
distribution system. Now consider a scalar output of 
the stage distribution system defined as 

mky kkk ,,1,0; =⋅= pc  (4-a) 
mkW

kkk ,...,1,0;)1( == ααc  (4-b) 

It follows from (2) that the probability of failure for the 
end-to-end path computation is given by the system 
output at sample (stage) m, i.e., pf=ym. For this reason, 
we call the system output at sample k the projected 
probability of failure at sample (stage) k.

As one can expect, the evolution of the distribution 
if inter-domain alternatives and the probability of 
failure for the end-to-end path computation as the 
number of domains grows is intimately related to the 
properties of the state matrices Ak, k=0,…,m-1 and the 
output vectors ck, k=0,…,m. Two immediate 
observations follow: 

• The eigenvalues of all Ak matrices are inside or on 
the unit circle in the complex plane, and therefore 
the stage distribution system is marginally stable.
This is an immediate result of the Gershgorin’s 
Circle Theorem [6] and the fact that all columns in 
Ak matrices have a sum equal to one. This is rather 
trivial, as the state vector represents a probability 
distribution, which by definition is bounded. 
Furthermore, all Ak matrices have at least one 
eigenvalue equal to one, corresponding to the 
“trivial” eigenvector pnull=(1 0 0 … 0)T. This 
follows from the fact that if no alternatives are 
reachable at stage k-1, then no alternatives are 
reachable at stage k, i.e., Ak.pnull=pnull.

• A less trivial observation is that the stage 
distribution system with the observed output (4) is 
observable [7], meaning that one can compute the 
exact distribution of reachable alternatives at 
stages 0 through k≤m, using only the projected 
probability of failure at these stages. The full 
implications of this observation need to be studied 
in more detail, but one immediate consequence is 
that the domains need to exchange only the 
projected probability of failure and the blocking 
probability in each domain instead of the entire 
distribution vector. 

w1 w2 wm-1 wm

S D

Domain 0 Domain 1 Domain m-1 Domain m

0 1 m-1 m

w0=1 wm+1=1
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Fig. 5 shows an example of the stage distribution 
system dynamics. In this example, there are m=100 
inter-domain stages (101 domains), all domains have 
the same blocking probability (and therefore the same 
state matrix Ak=A, k=0,…,m-1), and there are w=4 
alternatives at every stage. The state vector pk has 
w+1=5 states, which are the probabilities of reaching 0, 
1, 2, 3 or 4 inter-domain alternatives at stage k. Each 
chart in Fig. 5 shows the evolution of pk elements as 
path computation advances from one domain to 
another. For example, in Fig. 5(a), which corresponds 
to the blocking probability of α=0.25 in each domain, 
we see it is most likely to reach n=3 alternatives at the 
first stage (note the initial peak of about 0.42 at n=3), 
but after the second or third stage, all alternatives at 
each stage can most likely be reached (the peak of the 
distribution shifts from n=3 to n=4). Increasing the 
blocking probability in each domain to α=0.40, we see 
in Fig. 5(b) that the most likely number of alternatives 
to be reached after a few stages is still 4, although the 
probability of reaching 4 alternatives is smaller than 
the previous case. 

It may seem from Fig. 5(a) and Fig. 5(b) that the 
stage distribution system reaches a steady-state. 
However, numerical computation of the distribution for 
higher number of domains (1000 and above) shows 
that the probability of reaching all alternatives 
ultimately falls to zero, and the probability of reaching 
no alternative ultimately reaches one, although very 
slowly.  This slow convergence can be explained by 
the fact that the state matrix A in these two cases has a 
second eigenvalue very close to 1 (eigenvalues for 
each case are also shown in the figure). 

The convergence is much faster at higher blocking 
probabilities, as shown in Fig. 5(c) and Fig. 5(d). Here, 
the probability of reaching any number of alternatives 
n>0 quickly gets smaller at each stage. This is also 
evident from Fig. 6, where we have plotted the 
projected probability of failure at each inter-domain 
stage: In the first two cases (α=0.25 and α=0.40) the 
projected probability of failure almost converges to a 
steady-state probability strictly smaller than one after a 
few stages (although we repeat that should the number 
of domains go up all projected probabilities ultimately 
approach one), but in the next two cases (α=0.65 and 
α=0.80) the projected probability of failure has a quick 
convergence to one. 

Knowing the blocking probability of other domains, 
a path computation element can benefit from this type 
of analysis in several ways. For example, before 
attempting cooperation, a PCE can estimate the 
probability of failure for end-to-end path computation, 
and reject the request without starting any cooperation. 
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Figure 5. Distribution of the number of reachable inter-domain 
alternatives at each stage for a total of m=100 stages and w=4 inetr-
domain alternatives; each chart corresponds to a different blocking 
probibility (blocking probabilities are assumed to be the same for all 
domains). 
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A more interesting application is optimizing the 
path computation effort: Instead of choosing all inter-
domain alternatives (which can be a few hundred in 
case of wavelengths in optical domains for example), a 
PCE can start the cooperation using a certain number 
of alternatives that would result in a given probability 
of success for end-to-end path computation. For 
example, knowing that the end-to-end path 
computation with 4 inter-domain alternatives at each 
stage succeeds with a probability of 94% or better (pf

0.0619) when blocking probability in each domain is 
no more than 0.4, a cooperating PCE can limit the 
number of considered alternatives to 4, even if there 
are more alternatives. 

Figure 6. Projected probability of failure. 

4. Ad hoc cooperation 

Ad hoc cooperation requires no exchange of 
topology and resource information between domains. 
Therefore, it is particularly effective for a small 
number of domains with PCEs that have limited 
visibility of each other and are not exchanging any 
topology or resource information (this could be 
because of lack of support for PCE-PCE 
communication, or because of trust or policy issues for 
example). Since the same assumptions hold true for 
wireless networks, ad hoc routing protocols developed 
in the context of wireless networks could also be 
applicable to inter-domain path computation. In fact, 
such protocols should have even a better performance 
here, as communication between PCEs is more reliable 
than communication through wireless channels. 

One example of an ad hoc routing protocol is 
Dynamic Source Routing (DSR) [11], [12]. In dynamic 
source routing the source node broadcasts a route 
request (RREQ) message in search of a path towards a 
specific destination. Each node receiving a route 
request discards the request if it has already been 
processed, broadcasts the request again (each node 

only once) if a route to destination is unavailable, or 
returns the route in a route reply (RREP) message if it 
has a route to the destination node. 

Fig. 7 shows an example of ad hoc cooperation 
using an algorithm similar to DSR. In this example, 
path computation elements reside in border network 
elements (nodes A1, A2, B1, B2, B3, C1, C2, D1 and D2
in the figure) and have limited visibility of each other; 
in particular, each PCE can only communicate with its 
peer PCE in the neighboring domain, or other PCEs in 
the same domain. In an effort to compute a path to 
destination node D, the source node S sends separate 
path request messages to both A1 and A2 PCEs. A path 
request message sent to any node N includes the 
destination, the traffic engineering constraints for the 
end-to-end path, the best path to reach N from the 
source node, and the cost of this path. A1 and A2 PCEs 
compute the best path from S if not provided already, 
and send their own path request to their peer PCEs, B1
and C1 in this example. Upon receiving a path request 
message, each PCE 

• Computes the best path to destination if it is in the 
same domain as the destination, and returns the 
end-to-end path to the PCE which sent the path 
request, or 

• If receiving the path request from a peer PCE in a 
different domain which shows a lower cost of 
reaching the PCE from source, computes a path to 
every domain egress subject to given constraints, 
and if successful updates the path request message, 
and forwards the message to the domain egress, or 

• If receiving the path request from a PCE in the 
same domain which shows a lower cost of 
reaching the PCE from source, computes a path to 
every peer PCE in other domains subject to given 
constraints, and if successful updates the path 
request message and forwards the message to the 
peer PCE. 

Figure 7. Example of ad hoc cooperative path computation. 

As shown in Fig. 7, the source node may receive 
multiple paths to the destination. In this case the source 
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node may decide to wait to receive multiple paths and 
pick the best one, or may decide to signal the first path 
it receives to reduce the path set up time. The trade-off 
between path computation latency and the quality of 
paths that are signaled needs to be studied in detail. 

5. Conclusion 

Cooperation is a term that has been loosely used to 
refer to collaboration between path computation 
elements in the context of a single path computation 
instance. We offered a more accurate description of 
cooperation, and identified two forms of cooperation, 
called model-based and ad hoc. These models are not 
mutually exclusive, and an end-to-end path 
computation can indeed use both models to complete 
the path. Model-based cooperation is an example of 
divide-and-conquer algorithm: It first places a certain 
order on the traversed domains through a high-level 
path computation using full or aggregate models of 
other domains, and then finds the best path through the 
selected domains. When aggregate domain models are 
used, because of scalability or trust and privacy reasons 
for example, we showed it is beneficial to also 
advertise a measure of blocking in each domain to 
guide the path computation elements in choosing the 
appropriate path computation effort in terms of number 
of inter-domain alternatives that they would have to 
consider. Ad hoc cooperation is a less explored 
alternative to cooperation. While ad hoc routing 
protocols developed for wireless networks can provide 
good insight into how ad hoc cooperation should work, 
including traffic engineering information in the routing 
process will have an impact on the existing ad hoc 
protocols that needs to be studied in more detail. 
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