
On Cooperative Inter-Domain Path Computation

Payam Torab, Bijan Jabbari, Qian Xu and Shujia Gong
George Mason University

{ptorab, bjabbari, qxu, sgong}@gmu.edu

Xi Yang and Tom Lehman
Information Sciences Institute East, University of Southern California

{xyang, tlehman}@isi.edu

Chris Tracy and Jerry Sobieski
Mid-Atlantic Crossroads, University of Maryland

{chris, jerrys}@maxgigapop.net

Abstract

Inter-domain path computation, or the ability to
compute end-to-end paths across multiple domains, is
the next step toward wide deployment of a distributed
control plane with support for traffic engineering. A
key enabler to achieve this goal is the introduction of a
Path Computation Element (PCE) in each domain.
There are various ways these elements can collaborate
to compute an end-to-end path; of particular interest to
us in this paper is cooperative path computation, a
scheme where PCEs exchange path information in the
context of a specific end-to-end path computation
instance, often prior to signaling the path. We show
that depending on the information available to each
PCE, cooperation can take one of two forms, which we
call model-based and ad hoc. We demonstrate that
model-based cooperation is essentially a multistage
decision problem, and offer a probabilistic analysis
which we believe is the key to understanding the
problem and developing efficient inter-domain path
computation heuristics. In particular, we argue that
having an estimate of the blocking probability in each
domain can be helpful in determining the path
computation effort needed to find an end-to-end path.

1. Introduction

Distributed control plane technologies such as
Multiprotocol Label Switching (MPLS) and its
generalized version GMPLS [1], [2] are opening the

door to an array of end-to-end QoS-based services that
were previously hard to provide over the shared
Internet. The global adoption of service delivery using
these technologies assumes that users can be provided
connections with well-defined attributes that will not
change over the service delivery period with changes
in network or user population. Fundamental to this
assumption is the ability to dynamically compute
routes through the network that satisfy administrative,
resource or other types of constraints. Constrained
routing, or path computation, is an essential
functionality in MPLS, GMPLS, or any control plane
architecture with end-to-end performance objective.

Following the “distributed intelligence” design
philosophy of IP networks, the MPLS architecture [1]
viewed path computation as a simple extension of the
shortest path first (SPF) algorithm. Almost all MPLS
implementations today run a constrained shortest path
first (CSPF) algorithm that simply accepts or rejects
the network links used in shortest path computation
based on a set of boolean traffic engineering
constraints. This early view of ‘on-board’ path
computation has now been challenged in many ways.

To begin with, path computation requests have
become more complex since the early days of MPLS.
With GMPLS being applicable to a wide variety of
switching technologies such as packet, TDM and
wavelength switching, path computation constraints
are now more complex than simple bandwidth
availability or administrative constraints in packet-
switched networks. For example, path computation in
all-optical networks with end-to-end transparency may This work was supported by National Science Foundation grants

0335230, 0335300 and 0335266.

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

involve optical characteristics of the fiber links.
Another example is computing diverse paths for end-
to-end protected services, where diversity must be
satisfied with respect to all underlying switching layers
(wavelength, fiber, duct…). This is a complex problem
for which even heuristic algorithms are
computationally intensive. Supporting these complex
computation problems at every network node requires
a large amount of computing power at all nodes.

Another factor challenging the “on-board” path
computation paradigm is today’s more mature and
abstract view towards traffic engineering, which makes
it less dependent on link-state routing. While link-state
routing remains an important vehicle to share topology
and resource information between network nodes, it
should not be thought of as the only way to disseminate
this information, and attention should be also given to
a centralized view of traffic engineering where not all
network nodes support routing, or not all network
nodes are able to or decide to access or disseminate
traffic engineering information through a link-state
protocol. In such scenarios, even the basic topology
and resource information needed for path computation
can be unavailable to the node initiating a connection.

Finally, the routing architecture of GMPLS is now
challenged by the growing interest in GMPLS
deployment across multiple domains. A domain is any
collection of network elements within a common
sphere of address management. Examples of domains
include an OSPF area, an Autonomous System (AS)
running a single instance of OSPF, and multiple
autonomous systems within a single service provider’s
network [3]. Establishing end-to-end connections
across a large number of domains would be impractical
if not impossible, without establishing a hierarchy
across domains. As shown in Fig. 1, by separating the
control plane into path computation and signaling
planes these two functionalities can have different
architectures with respect to hierarchy. Specifically,
the path computation plane can have a hierarchical
structure, allowing aggregation of traffic engineering
information in each domain into compact models
suitable for path computation (with aggregation
applied at each level of hierarchy), and the signaling
plane can retain its flat architecture and follow the
(maybe loosely) computed path in a sequential manner.
Hierarchical path computation is also consistent with
the routing architecture and requirements set forth by
ITU-T for Automatically Switched Optical Networks
(ASON) [4], [5].

Because of the above reasons and other motivations
listed in [3], there is a growing interest in a control

plane element that is dedicated to path computation
and can reside in or outside of a network element1.

Figure 1. Decomposition of the control plane into a flat signaling
plane and a hierarchical path computation plane.

Among the many applications and drivers for
dedicated path computation elements, inter-domain
path computation, i.e., finding end-to-end paths across
multiple domains through collaboration between path
computation elements, is probably the most important.
In this paper, we are particularly interested in
cooperative inter-domain path computation, where
path computation elements in different domains
participate in computing an end-to-end path, in full
detail or loosely defined, often prior to signaling the
path. The distinction about when PCEs in different
domains collaborate is important, as every inter-
domain path computation indeed requires one form of
collaboration among PCEs; however, not all these
forms are considered to be cooperation, as we describe
in the next section. Finally, our study is focused on
computing a single path across multiple domains;
therefore, problems such as computing disjoint paths
across multiple domains are not considered here.

The outline of the paper is as follows: In Section 2,
we give an overview of cooperative path computation.
Specifically, we show that cooperation can take one of
two forms, which we refer to as model-based and ad
hoc. Through an example we show how these two
cooperation modes are different, and also the trade-offs
for each mode. We study the model-based cooperation
in Section 3. Here, we demonstrate through a
probabilistic analysis that by distributing information
about congestion, or more precisely blocking in each
domain, end-to-end path computation can be made
more efficient in terms of the overall path computation
effort. We briefly discuss ad hoc cooperation in
Section 4, just enough to demonstrate that the sizeable
literature on ad hoc routing in wireless networks is also

1 At the time of this writing, the IETF Path Computation Element
(PCE) working group has finished defining the architectural
requirements of a dedicated path computation element [3] and is
developing a protocol to interface with the element.

D
at

a
pl

an
e

Si
gn

al
in

g
pl

an
e

(fl
at

)
Pa

th
 c

om
pu

ta
tio

n
pl

an
e

(h
ie

ra
rc

hi
ca

l)

C
on

tro
l p

la
ne

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

applicable to inter-domain path computation, and
probably with a better performance, given the perfect
medium (compared to wireless networks) available to
PCEs to communicate with each other. Section 5
concludes the paper with our final thoughts.

2. Cooperative path computation

Cooperative path computation is one of several
possible ways that path computation elements in
different domains can collaborate to compute an end-
to-end path. Consider an end-to-end path computation
problem or instance, and assume that the detailed path
information from the source node to the ingress of a
certain domain (the “current domain”) is known2. We
say a PCE in the current domain and a group of PCEs
in other domains have cooperated when they exchange
path computation information that would determine the
path beyond the ingress to the next domain. For
example, PCEs may cooperate to find the ingress to the
next two domains, and once the path has reached the
second domain ingress, they may cooperate again to
find the subsequent domains. They may cooperate to
find all domains along the path to destination, with full
path information in each domain, or partial path
information that will have to be expanded in each
domain. What is common to all these scenarios is that a
group of PCEs exchange information in response to a
specific path computation instance, and generate path
information that goes beyond the next domain ingress.

Cooperation and its different forms can best be
described through an example. Fig. 2 shows a scenario
where a path computation problem has been resolved
up to the ingress node A1 in domain A (perhaps a
partial path has also been set up from the source node
to A1), and the PCE in domain A (PCE-A) receives a
request from A1 to further add to the path. In response,

• PCE-A may compute the best path through
domain A, which implicitly identifies the next
domain and its ingress (B1 for example). There is
no cooperation in this case, as PCE-A and other
PCEs do not exchange any path information; in
fact, the PCEs do not even collaborate in this case.

2 Domain ingress here refers to a network resource belonging to the
domain that once determined, would make path computation through
the domain independent of the path taken to reach the domain. For
example, for a packet-switched domain the ingress is the node
through which a path enters the domain, but for a wavelength-
switched domain with optical transparency the ingress is the
wavelength channel through which the path enters the domain,
because one also needs to know the wavelength to be able to
continue the path computation through the domain.

• PCE-A may compute the best path through
domain A, as well as the best path through the
next domain (domain B), or even other domains
all the way to the destination. The path
information outside domain A may be as detailed
as the complete list of all nodes and links, or may
be less specific and include only the list of
domains and their ingress and egress points. Since
computing the path across other domains requires
information from other domains, this is clearly an
example of collaboration between PCEs; however,
depending on how the path is computed it may
define cooperation or not, as we describe next.

Figure 2. Model-based and ad hoc cooperation examples.

In the second case above, PCE-A may generate the
path information in one of several ways:

- It may generate a path based on topology and
resource availability information disseminated by
other PCEs before receiving the path computation
request, through periodic or event-based
exchanges between domains for example (push
model). The level of detail for the generated path
depends on the information available to PCE-A,
and can range from a simple list of domains, to the
full list of links leading to the destination. This is
an example of collaboration but no cooperation:
Although PCEs are exchanging information, the
exchange is not in the context of a path
computation instance, and the returned path is
unilaterally decided by PCE-A.

- It may compute a loosely defined path consisting
of at least the next two domains (using a model of
other domains made available as defined in the
previous case), and then ask the PCEs in selected
domains to return one or more expanded paths
across their domains. For example, in Fig. 2, PCE-
A may first decide that domain B and domain C
would be the next two domains on the way to the
destination, using models of these domains
available beforehand. Then, in order to select the
best path through domain B, PCE-A asks the PCE
in domain B (PCE-B) to return a set of acceptable
paths (subject to the constraints specified for the
end-to-end path) through domain B (e.g., shortest
paths from B1 and B2 to C1 and C2). Once these
intra-domain paths are collected, PCE-A possibly

PCE-A PCE-B

A B A1 B1

Path
request

Incoming
path request

C1

C2B2

PCE-C
p1

p2

C

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

constructs a more detailed graph based on the
returned paths, and computes and returns a
detailed path going through domain A and B at
least. This case is an example of model-based
cooperation: The set of collaborating PCEs is first
determined based on a model of other domains,
and then PCEs exchange information to solve a
specific path computation instance.

- Finally, PCE-A may not have any information on
other domains, or may decide not to use any
information because it is out of date for example.
In this case, PCE-A can ask all PCEs in reachable
neighboring domains to work in parallel and return
one or more paths to the destination (again subject
to the constraints specified for the end-to-end
path). For example, in Fig. 2, recognizing that the
destination is not in domain A, PCE-A first tries to
compute paths from A1 to every ingress to
neighboring domains (nodes B1 and B2 in this
case); assuming that both B1 and B2 are reachable
(via paths p1 and p2 respectively), PCE-A then
asks PCE-B for paths to the destination starting
from B1 and B2. PCE-B repeats the process, and
requests its own neighboring domains to return the
best path to the destination. If PCE-B receives a
path to destination, it will send the path back to
PCE-A. PCE-A can then choose the best path to
the destination among possibly multiple paths that
it receives. This case is an example of ad-hoc
cooperation: Unlike the previous case, the group
of collaborating PCEs is not determined a priori,
but the PCEs still exchange information to solve a
specific path computation instance.

The choice between model-based or ad hoc
cooperation is determined by several factors, including
the number of domains, and more importantly whether
domains exchange topology and resource information
or not. Model-based cooperation clearly scales better,
and perhaps is the only choice when the number of
domains is large. Its performance largely depends on
the topology and resource information available to
each domain, more precisely, how detailed these
models are, and how fast they are updated. Ad hoc
cooperation on the other hand is best suited for smaller
number of domains with no inter-domain topology and
resource information exchange.

It should be clear from the above example that
cooperative path computation works best when PCEs
in different domains can reach each other faster than
the speed the network nodes can reach each other
through signaling. As discussed, PCEs in different
domains may form their own private network to
exchange path information, try different paths, and

cooperatively decide on an end-to-end path, all without
unnecessary signaling attempts that would otherwise
perturb the data plane and cause unnecessary updates
to routing and traffic engineering information in each
domain. Finally, in model-based cooperation PCEs
must be able to exchange topology and resource
information, most likely in an aggregate form, and
update the information over time. One solution is to
run a separate instance of a link-state protocol such as
OSPF between PCEs in different domains and
exchange domain information through opaque link-
state advertisements (LSAs) [8], [10].

3. Model-based cooperation

In model-based cooperation, the domains and the
order in which they are traversed are determined first,
or known in advance through policies or configuration.
As a result, the end-to-end path computation becomes a
multistage decision problem, where each decision stage
corresponds to selecting one of the possibly several
inter-domain alternatives. Depending on what domains
represent with regards to the switching technology
(i.e., packet, time slot, wavelength, etc.) and routing
scope (e.g., an OSPF area or an Autonomous System),
inter-domain alternatives represent network nodes,
links, or link resources such as time slots and
wavelength channels connecting the domains. For
example, for packet-switched domains representing
OSPF areas, each inter-domain alternative corresponds
to an area border router (ABR). For packet-switched
domains representing autonomous systems, each inter-
domain alternative corresponds to a pair of
autonomous system border routers (ASBRs) sitting at
the endpoints of a link connecting the autonomous
systems. For wavelength-switched domains, each inter-
domain alternative is a wavelength channel connecting
the two optical switches at the inter-domain link
endpoints. Fig. 3 illustrates these examples.

Figure 3. Examples of inter-domain alternatives.

Consider the scenario shown in Fig. 4, where the
traversed domains are numbered from 0 to m 1. The
source node S is located in domain 0 and the
destination node D is located in domain m. Assume
there are wi inter-domain alternatives for leaving
domain i-1 to domain i. Further assume that a path

OSPF
Area 1

OSPF
Area 0

ABR

Domain
1

Domain
2

AS 1 AS 2

ASBR

ASBR

Domain
1

Domain
2

ASBR

ASBR

Optical
Domain

1

Optical
Domain

2

OXC

OXC

Domain
1

Domain
2

OXC

1 choice (no alternatives) 2 alternatives 80 alternatives

40 wavelengths in
each WDM link

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

computation attempt through domain i fails with the
probability of αi, i.e., given an arbitrary ingress and an
arbitrary egress in domain i, there is a chance of αi that
no path will be available between them.

Figure 4. Path computation as a multistage decision problem.

Define p(i,n) i=1,…,m, n=1,…,wi as the probability
of reaching n inter-domain alternatives at stage i, i.e.,
after domain i-1 and before domain i. By definition,
p(0,n)=1 for n=1 and p(0,n)=0 otherwise. Assuming
there are k inter-domain alternatives at stage i-1, the
conditional probability of reaching n alternatives at
stage i has a binomial distribution with failure
probability of αi-1

k. Thus, the unconditional probability
p(i,n) can be expanded as

−
−

−
=

−
−

− −−=
1

1

1
0

1
)(

1)1(),1(),(
i

i

i

w

k

nk
i

knw
i

n
w kipCnip αα (1)

for i=1,…m and n=1,..,wi. Using (1), one can compute
the distribution of the number of reachable inter-
domain alternatives at every stage, starting from the
first stage. In particular, the distribution at stage m can
be used to compute the probability of failure pf (or
probability of success ps=1-pf) for the end-to-end path
computation, as follows:

=

=+=
mw

k

k
mf kmpmpp

0
),()0,1(α (2-a)

=

−=+=−=
mw

k

k
mfs kmpmppp

0
)1)(,()1,1(1 α (2-b)

The distribution of reachable alternatives is
binomial at the first stage, but gets more involved after
each stage3. To gain better understanding of the
dynamics of this distribution, i.e., how the distribution
evolves from one inter-domain stage to the next, let us
analyze a simple case where the number of inter-
domain alternatives (reachable and unreachable) at
every stage is the same, i.e., w1=w2=…=wm=w. Let the
(w+1)×1 vector pk=(p(k,0), p(k,1),…, p(k,w))T denote
the distribution of the number of reachable alternatives
at stage k. It follows from (1) that pk is the state vector
of an unforced linear dynamical system with the state
equation and initial condition given by

3 However, the conditional distribution, i.e., the distribution of the
number of alternatives at stage i given the number of alternatives at
stage i-1, remains binomial.

mkkkk ,,1;11 == −− pAp (3-a)
T)0010(0 =p (3-b)

where the elements of the (w+1)×(w+1) state matrices
Ak=[aijk] k=0,…,m-1 are given by

wjwiCa ij
k

jiw
k

i
wijk ,...,0;,...,0;)1()(==−= − αα (3-c)

with a0,0,k=1. We call the linear system in (3) the stage
distribution system. Now consider a scalar output of
the stage distribution system defined as

mky kkk ,,1,0; =⋅= pc (4-a)
mkW

kkk ,...,1,0;)1(== ααc (4-b)

It follows from (2) that the probability of failure for the
end-to-end path computation is given by the system
output at sample (stage) m, i.e., pf=ym. For this reason,
we call the system output at sample k the projected
probability of failure at sample (stage) k.

As one can expect, the evolution of the distribution
if inter-domain alternatives and the probability of
failure for the end-to-end path computation as the
number of domains grows is intimately related to the
properties of the state matrices Ak, k=0,…,m-1 and the
output vectors ck, k=0,…,m. Two immediate
observations follow:

• The eigenvalues of all Ak matrices are inside or on
the unit circle in the complex plane, and therefore
the stage distribution system is marginally stable.
This is an immediate result of the Gershgorin’s
Circle Theorem [6] and the fact that all columns in
Ak matrices have a sum equal to one. This is rather
trivial, as the state vector represents a probability
distribution, which by definition is bounded.
Furthermore, all Ak matrices have at least one
eigenvalue equal to one, corresponding to the
“trivial” eigenvector pnull=(1 0 0 … 0)T. This
follows from the fact that if no alternatives are
reachable at stage k-1, then no alternatives are
reachable at stage k, i.e., Ak.pnull=pnull.

• A less trivial observation is that the stage
distribution system with the observed output (4) is
observable [7], meaning that one can compute the
exact distribution of reachable alternatives at
stages 0 through k≤m, using only the projected
probability of failure at these stages. The full
implications of this observation need to be studied
in more detail, but one immediate consequence is
that the domains need to exchange only the
projected probability of failure and the blocking
probability in each domain instead of the entire
distribution vector.

w1 w2 wm-1 wm

S D

Domain 0 Domain 1 Domain m-1 Domain m

0 1 m-1 m

w0=1 wm+1=1

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

Fig. 5 shows an example of the stage distribution
system dynamics. In this example, there are m=100
inter-domain stages (101 domains), all domains have
the same blocking probability (and therefore the same
state matrix Ak=A, k=0,…,m-1), and there are w=4
alternatives at every stage. The state vector pk has
w+1=5 states, which are the probabilities of reaching 0,
1, 2, 3 or 4 inter-domain alternatives at stage k. Each
chart in Fig. 5 shows the evolution of pk elements as
path computation advances from one domain to
another. For example, in Fig. 5(a), which corresponds
to the blocking probability of α=0.25 in each domain,
we see it is most likely to reach n=3 alternatives at the
first stage (note the initial peak of about 0.42 at n=3),
but after the second or third stage, all alternatives at
each stage can most likely be reached (the peak of the
distribution shifts from n=3 to n=4). Increasing the
blocking probability in each domain to α=0.40, we see
in Fig. 5(b) that the most likely number of alternatives
to be reached after a few stages is still 4, although the
probability of reaching 4 alternatives is smaller than
the previous case.

It may seem from Fig. 5(a) and Fig. 5(b) that the
stage distribution system reaches a steady-state.
However, numerical computation of the distribution for
higher number of domains (1000 and above) shows
that the probability of reaching all alternatives
ultimately falls to zero, and the probability of reaching
no alternative ultimately reaches one, although very
slowly. This slow convergence can be explained by
the fact that the state matrix A in these two cases has a
second eigenvalue very close to 1 (eigenvalues for
each case are also shown in the figure).

The convergence is much faster at higher blocking
probabilities, as shown in Fig. 5(c) and Fig. 5(d). Here,
the probability of reaching any number of alternatives
n>0 quickly gets smaller at each stage. This is also
evident from Fig. 6, where we have plotted the
projected probability of failure at each inter-domain
stage: In the first two cases (α=0.25 and α=0.40) the
projected probability of failure almost converges to a
steady-state probability strictly smaller than one after a
few stages (although we repeat that should the number
of domains go up all projected probabilities ultimately
approach one), but in the next two cases (α=0.65 and
α=0.80) the projected probability of failure has a quick
convergence to one.

Knowing the blocking probability of other domains,
a path computation element can benefit from this type
of analysis in several ways. For example, before
attempting cooperation, a PCE can estimate the
probability of failure for end-to-end path computation,
and reject the request without starting any cooperation.

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of reachable inter-domain alternatives (n)

Pr
ob

ab
ili

ty
 o

f r
ea

ch
in

g
n

al
te

rn
at

iv
es

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of reachable inter-domain alternatives (n)
Pr

ob
ab

ili
ty

 o
f r

ea
ch

in
g

n
al

te
rn

at
iv

es

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of reachable inter-domain alternatives (n)

Pr
ob

ab
ili

ty
 o

f r
ea

ch
in

g
n

al
te

rn
at

iv
es

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of reachable inter-domain alternatives (n)

Pr
ob

ab
ili

ty
 o

f r
ea

ch
in

g
n

al
te

rn
at

iv
es

Figure 5. Distribution of the number of reachable inter-domain
alternatives at each stage for a total of m=100 stages and w=4 inetr-
domain alternatives; each chart corresponds to a different blocking
probibility (blocking probabilities are assumed to be the same for all
domains).

α=0.25
pf =0.0082
λ1=1.0000
λ2=0.0090
λ3=0.0594
λ4=0.0432
λ5≈1.0000

(a)

α=0.40
pf =0.0619
λ1=1.0000
λ2=0.2302
λ3=0.0241
λ4=0.1191
λ5≈1.0000

(b)

(c)

α=0.65
pf =0.9817
λ1=1.0000
λ2=0.9675
λ3=0.4729
λ4=0.1528
λ5=0.0231

(d)

α=0.80
pf =1.0000
λ1=1.0000
λ2=0.7223
λ3=0.2891
λ4=0.0687
λ5=0.0075

St
ag

e
1

St
ag

e
10

00.42

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

A more interesting application is optimizing the
path computation effort: Instead of choosing all inter-
domain alternatives (which can be a few hundred in
case of wavelengths in optical domains for example), a
PCE can start the cooperation using a certain number
of alternatives that would result in a given probability
of success for end-to-end path computation. For
example, knowing that the end-to-end path
computation with 4 inter-domain alternatives at each
stage succeeds with a probability of 94% or better (pf

0.0619) when blocking probability in each domain is
no more than 0.4, a cooperating PCE can limit the
number of considered alternatives to 4, even if there
are more alternatives.

Figure 6. Projected probability of failure.

4. Ad hoc cooperation

Ad hoc cooperation requires no exchange of
topology and resource information between domains.
Therefore, it is particularly effective for a small
number of domains with PCEs that have limited
visibility of each other and are not exchanging any
topology or resource information (this could be
because of lack of support for PCE-PCE
communication, or because of trust or policy issues for
example). Since the same assumptions hold true for
wireless networks, ad hoc routing protocols developed
in the context of wireless networks could also be
applicable to inter-domain path computation. In fact,
such protocols should have even a better performance
here, as communication between PCEs is more reliable
than communication through wireless channels.

One example of an ad hoc routing protocol is
Dynamic Source Routing (DSR) [11], [12]. In dynamic
source routing the source node broadcasts a route
request (RREQ) message in search of a path towards a
specific destination. Each node receiving a route
request discards the request if it has already been
processed, broadcasts the request again (each node

only once) if a route to destination is unavailable, or
returns the route in a route reply (RREP) message if it
has a route to the destination node.

Fig. 7 shows an example of ad hoc cooperation
using an algorithm similar to DSR. In this example,
path computation elements reside in border network
elements (nodes A1, A2, B1, B2, B3, C1, C2, D1 and D2
in the figure) and have limited visibility of each other;
in particular, each PCE can only communicate with its
peer PCE in the neighboring domain, or other PCEs in
the same domain. In an effort to compute a path to
destination node D, the source node S sends separate
path request messages to both A1 and A2 PCEs. A path
request message sent to any node N includes the
destination, the traffic engineering constraints for the
end-to-end path, the best path to reach N from the
source node, and the cost of this path. A1 and A2 PCEs
compute the best path from S if not provided already,
and send their own path request to their peer PCEs, B1
and C1 in this example. Upon receiving a path request
message, each PCE

• Computes the best path to destination if it is in the
same domain as the destination, and returns the
end-to-end path to the PCE which sent the path
request, or

• If receiving the path request from a peer PCE in a
different domain which shows a lower cost of
reaching the PCE from source, computes a path to
every domain egress subject to given constraints,
and if successful updates the path request message,
and forwards the message to the domain egress, or

• If receiving the path request from a PCE in the
same domain which shows a lower cost of
reaching the PCE from source, computes a path to
every peer PCE in other domains subject to given
constraints, and if successful updates the path
request message and forwards the message to the
peer PCE.

Figure 7. Example of ad hoc cooperative path computation.

As shown in Fig. 7, the source node may receive
multiple paths to the destination. In this case the source

Path request

Path reply

S

DC
D

A
B

A1

A2

C1

C2

B1

B2
B3

D2

D1

S A1 C1 C2B1 B2 B3 D2D1A2

1 10 100

.01

0.1

1.0

Inter-domain stage

α=0.25, pf =0.0082

α=0.40, pf =0.0619

α=0.65, pf =0.9817
α=0.80, pf =1.0000

Pr
oj

ec
te

d
pr

ob
ab

ili
ty

 o
ff

ai
lu

re

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

node may decide to wait to receive multiple paths and
pick the best one, or may decide to signal the first path
it receives to reduce the path set up time. The trade-off
between path computation latency and the quality of
paths that are signaled needs to be studied in detail.

5. Conclusion

Cooperation is a term that has been loosely used to
refer to collaboration between path computation
elements in the context of a single path computation
instance. We offered a more accurate description of
cooperation, and identified two forms of cooperation,
called model-based and ad hoc. These models are not
mutually exclusive, and an end-to-end path
computation can indeed use both models to complete
the path. Model-based cooperation is an example of
divide-and-conquer algorithm: It first places a certain
order on the traversed domains through a high-level
path computation using full or aggregate models of
other domains, and then finds the best path through the
selected domains. When aggregate domain models are
used, because of scalability or trust and privacy reasons
for example, we showed it is beneficial to also
advertise a measure of blocking in each domain to
guide the path computation elements in choosing the
appropriate path computation effort in terms of number
of inter-domain alternatives that they would have to
consider. Ad hoc cooperation is a less explored
alternative to cooperation. While ad hoc routing
protocols developed for wireless networks can provide
good insight into how ad hoc cooperation should work,
including traffic engineering information in the routing
process will have an impact on the existing ad hoc
protocols that needs to be studied in more detail.

6. Acknowledgement

We acknowledge Sameer Sharma for his work on
model-based path computation examples.

7. References

[1] E. Rosen, A. Viswanathan and R. Callon,
“Multiprotocol Label Switching Architecture,” IETF
RFC 3031.

[2] E. Mannie et al., “Generalized Multi-Protocol Label
Switching (GMPLS) architecture,” IETF RFC 3945.

[3] Farrel, J. P. Vasseur and J. Ash, “A Path Computation
Element (PCE) based architecture,” Internet draft draft-
ietf-pce-architecture.

[4] “Architecture and requirements for routing in the
automatically switched optical networks,” ITU-T
recommendation G.7715, July 2002.

[5] “Architecture for the automatically switched optical
network (ASON),” ITU-T recommendation G.8080,
November 2001.

[6] G. H. Golub and C. F. Van Loan, Matrix Computations,
Third Edition. Baltimore, MD: Johns Hopkins
University Press, 1996.

[7] P. Sage and C. C. White III, Optimum Systems Control,
Second Edition. Englewood Cliffs: NJ: Prentice-Hall,
Inc., 1977.

[8] S. Sharma and B. Jabbari, “NARB: Network Access
Resource Broker,” George Mason’s Communications
and Networking Lab (CNL) technical report, 2003.

[9] Xi Yang et al., “Policy-based resource management and
service provisioning in GMPLS networks,” First IEEE
Workshop on Adaptive Policy-based Management in
Network Management and Control (A-PBM),
Barcelona, Spain, April 2006.

[10] T. Lehman, J. Sobieski and B. Jabbari, “DRAGON: A
framework for service provisioning in heterogeneous
grid networks,” IEEE Communications Magazine, pp.
84-90, March 2006.

[11] E. Perkins, Editor, Ad Hoc Networking. Boston, MA;
Addison-Wesley, 2001.

[12] David B. Johnson, David A. Maltz and Yih-Chun Hu,
“The Dynamic Source Routing protocol (DSR) for
mobile ad hoc networks,” Internet draft draft-ietf-manet-
dsr.

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

