Syllabus

ECE 528: Introduction to Random Processes in ECE

Course Number: ECE 528

Prerequisites:

Prerequisites: ECE 220 and STAT 346 (all with grade of C or better), or permission of instructor.

Instructor: Bijan Jabbari, Professor
Semester: Fall 2019
Lecture Time: Monday 4:30-7:10 pm
Location: Innovation Hall 133

Office: Eng. Bldg. Room 3232
Office phone: 703-993-1618
Email: bjabbari@gmu.edu
Web: http://cnl.gmu.edu/
Office hours: Wednesday 3:00-4:15 pm, other times by appointment

Teaching Assistant: Zheng Wang email: zwang23@gmu.edu
Recitations: Wednesday 7:20 pm-8:35 pm
Office hours: Monday: 7:30 pm-9:30 pm \& Thursday 4:30 pm-6:30 pm in Rm ENGR 3204
Grader: Snehashis Paul (email: spaul20@masonlive.gmu.edu)

Administrative Assistant: N/A

Course Description

Probability and random processes are fundamental to communications, control, signal processing, and computer networks. Provides basic theory and important applications. Topics include probability concepts and axioms; stationarity and ergodicity; random variables and their functions; vectors; expectation and variance; conditional expectation; moment-generating and characteristic functions; random processes such as white noise and Gaussian; autocorrelation and power spectral density; linear filtering of random processes, and basic ideas of estimation and detection.

Course Outline

- Probability Models in ECE
- Review of probability: set theory, basic concepts, probability spaces, conditional probability, Bayes' Rule, independence, Borel Fields, Generation of random numbers
- Discrete Random Variables: Notion of Random Variables, Probability Mass Functions (PMF), Expected Value and Moments, Important Discrete Random Variables, Generation of Discrete Random Variables
- General Random Variables (Single Variable): Cumulative Distribution Functions (CDF), Probability Density Functions (PDF), functions of random variables, expectations and characteristic function, Markov and ChebyShev inequalities
- Pairs of Random Variables: joint and marginal distributions, conditional distributions and independence, functions of two random variables, Expectations and correlations, pairs of jointly Gaussian Random Variables, generating jointly Gaussian Random Variables
- Random vectors: Functions of several random variables expected value of vector random variables, jointly Gaussian Random vectors, convergence of random sequences
- Sums of random variables and long-term averages: the sample mean and the Laws of Large Numbers, the Central Limit Theorem
- Stochastic Processes: Basic concepts, Covariance, correlation, and stationarity, Gaussian processes and Brownian motion, Poisson and related processes, Power spectral density, Stochastic processes and linear systems
- Markov Processes and Markov Chains

Textbook and References:

- Probability, Statistics, and Random Processes, $3^{\text {rd }}$ Edition, by Alberto LeonGarcia, Pearson Prentice Hall, 2008.
- D. P. Bertsekas and J. N. Tsitsiklis, Introduction to Probability. Athena Scientific, Belmont, MA, 2nd Edition, 2008. See http://www.athenasc.com/probbook.html

Grading:

There will be weekly assignments, one Mid-term exam, and a Final exam. They will count towards the grade as follows:

- Homework 10\%
- Mid-term 40% (on October 21)
- Final Exam 50% (up to 2 hours and 30 minutes)

