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A noncooperative game-theoretic power control framework for a

wireless DS-CDMA uplink with imperfect successive interference

cancellation is presented. Assuming a fixed cancellation ordering, a

unique Nash equilibrium corresponding to the centralised solution is

shown to exist, and simulation reveals significant utility improvement

compared to traditional matched filter detection.

Introduction: Multiuser detection in wireless networks has attracted

much attention [1] and of particular note is successive interference

cancellation (SIC) [2], which is scalable and implementable. Under

SIC detection, the reconstructed received signals of users detected

first (often those with comparatively high received power) are

cancelled from the composite signal to aid in the detection of

subsequent (often weaker) users. Also of interest recently has been

the application of game-theoretic models to wireless network resource

allocation [3–6], which typically presume users to be selfish utility

maximisers and to employ traditional matched filter detection. We

herein extend the approach to a network with an SIC receiver at the

base station (BS).

System model and constraints: We consider the uplink of a slotted,

DS-CDMA network of N co-channel users with the common BS

employing an SIC receiver. It is assumed that path gains to the BS are

known and are quasi-static, at least over the time scale of the power

control process.

We find in [7] an expression for each user’s signal-to-interference-

plus-noise ratio (SINR) that allows for imperfect SIC. Adapting the

expressions in [7] to account for spreading gain, the SINR of user i, i.e.

the ith user to be detected and cancelled, is given as follows (see Note

below):
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where Ri is the bit rate of user i, Qi is the received power of user i, W is

the common bandwidth, ek2 [0, 1] is residual power of user k after

cancellation, N0 is the noise power spectral density, Iex is intercell

interference, and Ii represent the total interference plus noise experi-

enced by user i. (Note: Two types of indexing are needed in the present

work. Standard subscripts refer to the cancellation ordering, whereas

parenthetical subscripts (used below) refer to an arbitrary, a priori

ordering of the users.)

We investigate two orderings of cancellation. First is the typical case

in which users are detected and cancelled in decreasing order of

received power. In this case, the SINR for user (i), G(i), is given by

Gj if Q(i) is the jth largest received power. Second, given the set of users

N ¼ {1, . . . , N}, we introduce h: N !N which maps the arbitrary

ordering of users into the ordering of cancellation. Thus, G(i)¼Gh((i)) in

this simplified, fixed-ordering case.

System feasibility constraint and centralised power control with fixed

cancellation ordering: Assuming no power constraints, it can be

shown that given the SINR (1), a fixed cancellation ordering h(�),

spreading gains Li¼W=Ri, and SINR targets gi, each user can obtain

its target SINR if and only if:
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where g0¼
4

0, and e0 and L02 [0, 1) are arbitrary. If (2) holds, then the

unique power control solution for all (i)2N , call this Qpc, precisely

satisfies the SINR targets and has elements

Q
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SIC game-theoretic power control game: Given the player set N , the

power control game is defined as follows.

1. The continuous action space, which correspond to the received power

for each player, is given by Q(i) ¼
4

[Qmin, Qmax]. The joint action space

for the N users is Xi¼1
N

Q(i), where X denotes the Cartesian product.

2. The utility function for each user is reasonably given, as in [3], as the

ratio of the expected number of bits successfully transmitted and the

transmit power. For user (i) then:

uðiÞðQÞ ¼ uðiÞðQðiÞ;Qð�iÞÞ ¼
LRf ðGðiÞÞgðiÞ

MQðiÞ

ð4Þ

where f (G(i))¼ (1� 2Pe(G(i)))
M is the so-called efficiency function

which is modulation dependent through the BER function Pe(�), R is

the common bit rate, M is the packet size in bits, L is the number of

information bits, g(i) is the path gain to the BS for user (i), Q(�i) is the

(N� 1)-element vector of powers with Q(i) removed, and the SINR G(i)

is given either by the dynamic detection ordering or by Gh((i)).

Each player (i)2N solves the following optimisation problem:

max
QðiÞ2QðiÞ

uðiÞðQðiÞ;Qð�iÞÞ ð5Þ

and we refer to this game as the SIC power control game (SIC-PCG).

The standard equilibrium concept in noncooperative games is the Nash

equilibrium [8].

SIC-PCG equilibrium analysis: With dynamic cancellation ordering,

the utility function (4) exhibits a jump discontinuity at those points at

which the received powers of two or more users are identical, a direct

result of a corresponding discontinuity in the realised SINR. Conse-

quently, traditional Nash equilibrium existence results based on fixed

point theorems no longer apply [9]. Worse still, although there are

results for games with discontinuous utility functions [9, 10], the

requisite conditions on the utility function, namely quasi-concavity

in Q(i) and upper semi-continuity in Q(i), are not satisfied by u(i). There

are thus no (pure or mixed) Nash equilibrium existence results available

for SIC-PCG with dynamic cancellation ordering.

With a fixed cancellation ordering, we find much more solid

equilibrium guarantees. Specifically, much of the reasoning in Section

IVof [3] may be applied. In this case, u(i) is continuous in Q and quasi-

concave in Q(i), and, coupled with the compactness of the action space

Q, we may conclude that an equilibrium exists [8]. Furthermore, it is

shown in [3] with matched filter detection, a unique equilibrium SINR

G~ (i) that maximises the utility for user (i) exists, and G̃(i) solves

@f ðGðiÞÞ

@GðiÞ

GðiÞ ¼ f ðGðiÞÞ ð6Þ

assuming that G~ (i) is feasible under (2). In SIC-PCG, (6) applies as well,
and G~ (i)¼G~ is identical for all users. We can then express the best-

response function in similar fashion to [3]:

rðiÞðQð�iÞÞ ¼
~GIðiÞ
W=R

ð7Þ

i.e. presented with the measured interference I(i), user (i) sets its

received power so that G~ is precisely satisfied.

Theorem 1: Assuming a fixed cancellation order and system feasibility,

the Nash equilibrium power vector that results from successive applica-

tions of (7) is unique and, if properly ordered, identical to Qpc with

target SINR G~ .

Proof. We know from [3] that the Nash equilibrium power vector

resultant from repeated application of (7), call this Q(�)
g

as it is ordered

via the arbitrary ordering, is unique if the system is feasible, and we

also know that at the equilibrium, each user will achieve the equilibrium
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SINR G~ . Furthermore, given a cancellation order h(�), the power control

solution Qpc given in (3) exactly satisfies the target SINR G~ and is itself

unique. We conclude that for all i2N , Q(i)
g
¼Qh((i))

pc , and thus properly

ordered, the received power vectors are identical. u

Note that the equilibrium existence result presented above is not

dependent on the cancellation order mapping h and the cancellation

order might be chosen to satisfy some system criterion or even be

chosen randomly. In the simulation results, we consider the cancellation

orderings that maximise or minimise the total utility in the cell.

Simulation: Fig. 1 demonstrates for a five-node network the per cent

improvement in total cell utility over traditional matched filter detec-

tion at equilibrium against a common spreading gain. Perfect cancel-

lation (e¼ 0) and a moderate cancellation error (e¼ 0.3) were tested.

The dashed curve in each case represents the improvement gained by

using the fixed detection ordering that yields the highest total utility,

and the solid curve represents the fixed detection ordering that yields

the lowest total utility. Fig. 1 shows that the greatest utility gains occur

at lower spreading gains, cancellation error can degrade the utility

significantly, and that even at the highest spreading gains tested an

improvement of nearly 17% can be realised with perfect cancellation.

The lower curve for e¼ 0.3 reveals that with moderate cancellation

error, the cancellation ordering that yields the lowest total utility can

still realise a 5% improvement over matched filter detection.

Fig. 1 Per cent improvement in total cell utility at equilibrium over
traditional e¼ 1 case against a common spreading gain

Results averaged over five runs; parameter values included N¼ 5, L¼ 64 bits,
M¼ 80 bits, R¼ 10 kbits, W¼R� L, N0W¼�143.0 dBm, Iex¼ 0 W, G~ ¼ 4.57,
g values uniformly distributed between�110 and�90 dB, and BPSK modulation
- - s - - e¼ 0, maximal-utility ordering
- - u - - e¼ 0.3, maximal-utility ordering
—s— e¼ 0, minimal-utility ordering
—u— e¼ 0.3, minimal-utility ordering
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