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Abstract— A stochastic game-theoretic framework for calculat-
ing transmit power strategies for nodes in a competitive CDMA
wireless network is presented. Unlike traditional game-theoretic
power control, delay sensitivity is explicitly included. Stationary
Nash equilibria that are a function of congestion and that allow
for multirate transmission are determined. In both static path loss
and dynamic shadowing path loss environments, the stochastic
game equilibria calculated compare very favorably to traditional
single-agent and often approach the performance of centralized
optimization.

I. INTRODUCTION

Power control for CDMA wireless systems is an imperative,
not only to mitigate the near-far problem, but also to improve
the capacity of systems with scarce bandwidth. Recently,
noncooperative game theory has emerged as the appropriate
framework within which to analyze resource allocation prob-
lems in competitive wireless networks [1]–[4]. Such networks
are presumed to consist of nodes which cannot form binding
contracts of behavior and, as such, can be considered selfish
utility maximizers. Research following this approach has most
often dealt with the static allocation of transmit powers in
networks without regard to buffer level variation in time
(congestion) or to evolving channel conditions. (A notable
exception is [5].) The present effort addresses both of these
shortcomings and offers novel solutions.

This work applies stochastic game theory, which models
the dynamism of the cellular uplink power-control problem
by assigning a vector of buffer states to the nodes and
captures the statistics of packet arrivals from higher layers
and packet departures via successful transmissions, neither of
which is deterministic. By adapting a recently-devised solution
technique of Herings and Peeters [6], consistent stationary
Nash equilibria of the delay-sensitive power control problem
which map congestion level to a transmit power level are de-
termined. Such equilibria maximize the expected utility (now
and discounted in future slots) at each node. This approach
represents a game-theoretic refinement of other congestion-
sensitive wireless resource allocation efforts such as [7], [8].

Furthermore, evolving channel conditions can be accommo-
dated within the preceding framework heuristically. Specif-
ically, approximate Nash equilibria can be determined for

varying channel shadowing conditions by generating and
switching between multiple Nash equilibria transmit power
profiles according to the observed path loss at each node.
By applying this solution, path loss-adaptive game-theoretic
power control can be achieved, and performance gains can
be realized, without having to incorporate explicit channel
transition dynamics.

The remainder of this paper proceeds as follows. Section II
presents the system model, and Section III details the stochas-
tic game formulation, the equilibrium concept, and the method
of solution. Section IV presents and discusses simulation
results which compare the performance of the current scheme
to traditional optimization methods. Section V concludes and
offers some suggestions for future work.

II. SYSTEM MODEL

We consider the uplink of a traditional, n-node CDMA
wireless network. Time is divided into equal-length slots of
duration Ts, and nodes are assumed to be in adequate syn-
chronization. Each node contains a buffer of size B bits, and
in each slot, information arrives for transmission in packets
of length b bits according to a stationary probability mass
function pA(·) with positive support 1, 2, . . . , amax.

As stationary power control strategies are sought, the trans-
mit power of node i is assumed to be a function, not of time,
but exclusively of the “state” of the system (to be defined
precisely in Section III). The feasible set of transmit power
levels {P1, . . . , Pm} � P , however, is independent of state
and is assumed identical for all nodes.

We assume the ability via variable spreading gain to transmit
more than one packet per slot, with K total bit rates possible.
Let R = {R, 2R, . . .KR} be the set of available bit rates,
where R is the lowest possible rate. If we set Ts = b/R,
k packets can be transmitted per slot if rate Rk = kR is
chosen.

Given the n-element vector of selected powers p =
(p1, . . . , pn) and the bit rate ri and uplink path loss �i
for node i, the signal-to-interference-plus-noise ratio per bit



(SINR) for node i is given by:

γi(p, ri) =
Ws

ri
· pi/�i∑n

j=1,j �=i pj/�j +Nr
, (1)

where Ws is the system bandwidth, and Nr is the common
receiver noise power.

In addition, given a probability of bit error eb(γi(p, ri)),
the probability that all of the transmitted bits in a packet are
received correctly is assumed to be:

Pc(p, ri) =(1 − eb(γi(p, ri)))
b
. (2)

We assume that transmitted packets are received independently
of each other, and so the number of correctly received packets
per slot is a binomial random variable.

In addition, each node is assumed to have a target packet
error rate Pe, but due to the nature of the solution method,
there is no guarantee that Pe is feasible for any node. As will
be formulated below, the multirate operation is assumed to be
implicit: given p, each node determines the bit rate that yields
the highest expected throughput, with the constraint that Pe is
satisfied. If no bit rate satisfies Pe, then the lowest bit rate R
is used.

Path losses and other system parameters not explicitly
singled out are assumed to be common knowledge across the
nodes. Notably, although it could pose practical problems, it
is assumed that buffer levels of the terminals are common
knowledge.

III. STOCHASTIC GAME FORMULATION AND

EQUILIBRIUM EXISTENCE

A. Static Path Loss Assumption

1) Game Formulation: A finite, discounted stochastic game
Γ—with present simplifications—is given by the following
six-tuple [6]:

Γ =
〈
N,Ω,P,{ui}i∈N , π, δ

〉
. (3)

1) N ={1, . . . , n} is the set of mutually interfering nodes.
2) Ω = {ω1, . . . , ωz} is the state space for the system,

here the set of possible buffer levels (in units of b-bit
packets) across the n transmitting nodes. We assume
that Ω is “vectorized” into substates, i.e., there exists a
mapping ψ : Ω → Ω′, where Ω′ is a set of n-tuples
with cardinality card(Ω). Specifically, we assume that
Ω′ = ×n

i=1W , where W =
{
1, 2, . . . , z1/n = B/b

}
is

the (identical) substate for each node. W is thus the
set of possible buffer levels for each node.1 A typical
member of Ω′ could thus be written as (ω′

1, ω
′
2, . . . , ω

′
n),

where ω′
i is the substate for node i. In the simplified case

of n = 2, ψ(ω) is given by the mapping:

ω′
1 = 1 +

⌊
(ω − 1)/

√
z
⌋

(4a)

ω′
2 = 1 + (ω − 1) mod

√
z (4b)

1It may be noticed that in the present formulation the buffer is assumed
to never empty. This is done for convenience, but it is not essential to this
method.

for any ω ∈ Ω. Thus for z = 9, ψ(7) = (3, 1). An
analogous mapping for n > 2 is easily derived.

3) P is the aforementioned static feasible set of transmit
powers for all nodes and states.

4) ui : H → R is the (deterministic) per-slot payoff func-
tion of node i ∈ N , where H �{(ω,p) |ω ∈ Ω,p ∈ P}
and P � ×n

i=1P is the joint action space of the n nodes.
Many utility functions are conceivable, but we prefer to
employ a utility function that captures the appropriate
incentives while being simple and intuitive. Our starting
point is the utility employed in [2], [9] which seeks
to express the utility in units of expected number of
bits transmitted per Joule of expended transmit power.
Ignoring any framing bits, this utility is expressed in the
present notation as follows:

ui(p) =
koptRPc(p, Rkopt

)
pi

bits
Joule

, (5)

where Pc(·) is given in (2).2 In (5), kopt is the optimal
mode, given by:

kopt =




arg max
k∈Kf

{kPc(p, Rk) : Pc(p, Rk) ≥ 1 − Pe} ,

if Pc(p, R) ≥ 1 − Pe;

1, otherwise,
(6)

where Kf ={1, . . . ,min{ω′
i,K}}.

Now, in order to make this utility state-dependent and
thereby provide an incentive for each node to empty its
buffer, we modify (5) so that the utility is the expected
fraction of the buffer emptied per Joule of expended
transmit power. We are thus led to the following utility
function:

ui(ω,p) = ui(ω′
i,p)

=
koptRPc(p, Rkopt

)
b ω′

ipi

% of buffer
Joule

. (7)

5) π : H → ∆(Ω) are the state transition probabilities,
where ∆(Ω) is the set of all probability distributions on
Ω. A key driving principle in this section is that, since
the utility function must be deterministic, the transition
function must account for both probabilistic packets
arrivals from higher layers and departures due to suc-
cessful transmissions. Let ω∗ be the potential next state.
Note that the transition probabilities, conditioned on the
current state ω and power vector p, are independent
from node to node, and thus, since the state space is
vectored, we may decompose the transition probabilities

2In [2], [9], the packet success function was modified slightly to prevent
the zero transmit power case from yielding an infinitely high utility. We may
ignore this as P is sufficiently bounded. Also of interest is that the authors
in [2] assert that that same factor amounted to an implicit delay constraint.
In what follows, an explicit delay constraint is added.



π(ω∗ |ω,p) in the natural way:

π(ω∗ |ω,p) =
n∏

i=1

πi(ω∗
i
′ |ω,p), (8)

where ω∗
i
′ is the ith component of the vectored state ω∗′.

The transition probability for node i may be in turn
decomposed as follows:

πi(ω∗
i
′ |ω,p)

= πi(ω∗
i
′ |ω′

i,p)

=
amax∑
a=1

ω′
i∑

τ=1

P
{
ω∗

i
′ |ω′

i,p, T = τ,A = a
}

· P{T = τ |ω′
i,p, A = a} · P{A = a}

=
amax∑
a=1

P{A = a}
ω′

i∑
τ=1

P{T = τ |ω′
i,p}

· P{
ω∗

i
′ |ω′

i,p, T = τ,A = a
}
. (9)

We consider each factor of (9) in turn.

a) P{A = a} is simply the static PMF of the packet
arrival process, pA(·).

b) P
{
ω∗

i
′ |ω′

i,p, T = τ,A = a
}

is the probability that
given the current state, power vector, and number
of transmitted and arrival packets, the state ω∗

i
′ is

attained. There are three subcases to examine here,
but these are omitted for brevity.

c) P{T = τ |ω′
i,p} is the probability that τ packets

are transmitted given the current state and power
vector. Since the modal selection is deterministic,
this term will either be one or zero. Specifically:

P{T = τ |ω′
i,p} =

{
1, if τ = kopt;
0, otherwise,

(10)

where kopt is determined according to the opti-
mization in (6).

Therefore, from (8), we have the final expression for the
transition probabilities:

π(ω∗ |ω,p) =
n∏

i=1


amax∑

a=1

pA(a)
ω′

i∑
τ=1

P{T = τ |ω′
i,p}

· P{
ω∗

i
′ |ω′

i,p, T = τ,A = a
}]
. (11)

6) δ ∈ (0, 1) is the discount factor for future payoffs and
would normally be assumed near unity for nodes whose
termination horizons are in the indeterminate future [10].

2) Equilibrium: The objective is to find a consistent equi-
librium strategy for all nodes given the game definition in Sec-
tion III-A.1. We narrow our consideration to strategies which
are stationary, i.e., those strategies which are independent of
the history of the game and of time and thus depend solely on

the current state of the system. We define a stationary strategy
formally as follows [6].

Definition 1: A stationary strategy ρi for node i is given
by:

ρi =
(
ρi

ω1
, . . . , ρi

ωz

)
(12)

where ρi
ω is a probability measure on P for each ω ∈ Ω.

Definition 2: A stationary strategy ρi is said to be a pure
strategy if, for each state ω, the optimal transmit power is
deterministic. Otherwise, ρi is said to be mixed.
An equilibrium strategy-tuple ρ = (ρ1, . . . , ρn) is a vector
of stationary strategies which possesses the Nash equilibrium
property that no node has an incentive to unilaterally deviate
from its strategy. Such equilibria could thus be said to exhibit
competitive stability.

A classical result of game theory is that there exists at
least one—possibly mixed—stationary equilibrium to every
stochastic game [11], but calculating equilibrium strategies
and guaranteeing that all nodes will converge to the same
equilibrium are traditionally difficult problems.

In [6], Herings and Peeters present a new algorithm for
calculating equilibrium strategy-tuples for discounted stochas-
tic games. This algorithm, which employs a stochastic tracing
procedure that extends seminal work of Harsanyi and Selten
[12], offers the following: if a common, pure initial strategy (or
prior) is assumed, the algorithm yields a consistent (possibly
mixed) equilibrium across the nodes.3 It is also a globally
convergent algorithm, but there is no guarantee of speedy
convergence.

B. Dynamic Path Loss

In Section III-A, the system path losses are assumed to
be static, but we may extend the formulation to account for
a dynamic path loss. Most generally, path loss would be
included in the state space, and the dynamics of the path loss
would be accounted for in the transition probabilities. Due
to inherent complexity, though, this is impractical. However,
approximate equilibrium strategies in a slow, shadow fading
environment can be obtained. (In what follows, short-term
fading is assumed to be mitigated.)

Let {�1, . . . , �q} � L be the set of (quantized) path loss
values realizable by each node due to shadowing. Furthermore,
let L = ×n

i=1L be the vector of possible path loss values with
typical value L ∈ L. Define the mapping φ : L → R, where
R is the set of all equilibrium strategies, by φ(L) = ρL, where
ρL is the equilibrium strategy-tuple obtained with static path
loss vector L. As the observed path loss evolves, φ determines
the new strategy to be used by all nodes.

We acknowledge that in this case strategies will not strictly
be Nash equilibria because the dynamics of the path loss
evolution are not included in the formulation. However, since
future payoffs are discounted and the shadowing coherence
time is expected to be long compared to the slot time, we
may realistically expect that the loss in optimality will not be

3We note that although mixed strategies are possible in this algorithm, our
experience has shown that pure strategies are nearly universally realized.



very great. An additional advantage of this approach is that
the strategies may be calculated a priori and switched among
during network operation.

IV. SIMULATION AND DISCUSSION

In order to evaluate the efficacy of the current approach, the
game formulations of Section III were simulated in MATLAB,
and we examine the simple case of n = 2. The stationary
equilibrium strategies themselves, given the common prior
strategy and the utilities and transition probabilities accord-
ing to (7) and (11), respectively, were generated using the
STOCHASTICGAMESOLVER Fortran code [13]. For the com-
mon prior, a reasonable assumption is for each node to transmit
at the highest possible power Pm at the onset. However, we
also made use of additional priors: all nodes transmitting at
(or approximately at) the lowest power P1, nodes adopting
the single-agent strategy (described below), or nodes using a
random—but consistent—strategy. Depending on the system
parameters, some priors we seen to realize speedier conver-
gence to equilibrium than others, and such speedier priors were
adopted on a case-by-case basis. The modulation is assumed
to be BPSK, and therefore eb(γi) = Q

(√
2γi

)
[14].

For comparison, stationary single-agent and centralized op-
timization strategies were also calculated. Traditional single-
agent optimization involves evaluating an infinite-horizon,
discounted dynamic programming problem by solving the
Bellman equation [15]:

Vi(ω′
i) = max

pi∈P

{
ui(ω,p) + δ

∑
ω′∈W

πi

(
ω∗

i
′|ω′

i,p
)
Vi(ω′

i)

}
,

(13)
for all ω′

i ∈W and for all i ∈ N . Since there is no strategizing
in this case, the transmit powers of the neighboring nodes must
be assumed. A reasonable, yet pessimistic, assumption is to
assume that neighboring nodes transmit at the highest available
power.

The centralized optimization of n nodes, which is expected
to yield the utility-maximizing allocation of transmit powers,
is given in like manner to (13), albeit in n dimensions. For
both the single-agent and centralized n-node optimization,
code from the CompEcon Toolbox [16] was employed for
convenience.

A. Static Path Loss

For the static path loss case, an example of the total
discounted utilities realized by the nodes over 100 time
slots using the game-theoretic, centralized, and single-agent
strategies (and combinations thereof) is shown in Fig. 1. The
utilities are presented normalized to the centralized solution,
and we observe a steady improvement with the employment
of the game-theoretic over the single-agent approach. In this
particular case, the performance of the game-theoretic strategy
matches identically that of the centralized allocation for each
trial.

The average total discounted utility over 100 slots for the
two nodes is shown in Table I as a function of the nodes’
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Fig. 1. An example of the total utility realized over 100 slots (normalized to
the centralized solution) for 50 trials with (�1, �2) = (110 dB, 110 dB).
The legend indicates the respective approaches used by the two nodes.
Parameters used in this and other simulations: m = 4, P1 = −35 dBW,
Pm = −25 dBW, P is uniformly distributed in dB, Pe = 10−3, Ws =
1.25 MHz, R = 20 kbps, Nr = −143 dBW, amax = 5, pA(1) = 0.30,
pA(2) = 0.25, pA(3) = 0.20, pA(4) = 0.15, pA(5) = 0.10, δ = 0.95,
K = 4, b = 120 bits, z = 9, q = 3, and L = {100 dB, 105 dB, 110 dB}
with 115 dB used in some tests.

TABLE I

AVERAGE TOTAL DISCOUNTED UTILITY OVER 100 SLOTS REALIZED VIA

THE VARIOUS POWER CONTROL STRATEGIES (STATIC PATH LOSS). DATA

WERE AVERAGED OVER 50 TRIALS WITH RANDOMIZED INITIAL STATE.

Average total utility (% of buffer per µJ)

(�1, �2) (dB) Single-agent Game theory Centralized
(100, 100) 11.93 20.96 20.96
(100, 105) 14.01 17.08 17.08
(100, 110) 11.53 14.54 14.54
(105, 105) 10.59 20.96 20.96
(105, 110) 9.34 14.19 17.07
(105, 115) 11.53 14.07 14.07
(110, 110) 10.49 16.91 16.91

path loss. We see that in nearly every case, the game-theoretic
equilibrium achieves the centralized utility, an atypically effi-
cient outcome [17]. The game-theoretic solution also exhibits
a 22% to 98% improvement in total utility over the single-
agent case. In addition, as expected, we observe a general
improvement in utilities with lower path losses; nodes find it
comparatively easier to empty the buffer under more favorable
channel conditions.

In addition to improving the total utility—as designed—we
observe that the game-theoretic equilibria obtained generally
require much less total transmit energy over single-agent
optimization. Fig. 2 shows the total transmit energy expended
over 100 slots relative to that expended by the centralized
solution, and Table II presents the average total transmit energy
over 100 slots. As with the utility, the game-theoretic equilibria
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Fig. 2. An example of the total transmit energy expended over 100
slots (normalized to the centralized solution) for 50 trials with (�1, �2) =
(110 dB, 110 dB).

TABLE II

AVERAGE TOTAL TRANSMIT ENERGY EXPENDED OVER 100 SLOTS VIA

THE VARIOUS POWER CONTROL STRATEGIES (STATIC PATH LOSS). DATA

WERE AVERAGED OVER 50 TRIALS WITH RANDOMIZED INITIAL STATE.

Average total transmit energy (mJ)

(�1, �2) (dB) Single-agent Game theory Centralized
(100, 100) 1.04 0.38 0.38
(100, 105) 0.97 0.53 0.53
(100, 110) 2.09 1.26 1.26
(105, 105) 2.01 0.38 0.38
(105, 110) 0.93 0.38 0.53
(105, 115) 2.09 1.34 1.34
(110, 110) 2.02 0.38 0.38

achieve much improved energy expenditures over the single-
agent case and yield equal (and in one case slightly less)
total transmit energy than the centralized optimization. Energy
savings is thus successfully realized.

Although yielding satisfactory results, the algorithm used to
generate the Nash equilibrium strategies above is not without
its drawbacks. It was typically quite time-consuming to gener-
ate the equilibria, and convergence times were unpredictable.
Most restrictive, however, was the “curse of dimensionality”:
we were limited to small state and action spaces as large spaces
were prohibitively complex.

B. Dynamic Path Loss

For the dynamic path loss case, a shadowing map was
generated using the correlated shadowing model of [18] with a
smooth interpolation between shadowing values. Nodes were
able to switch strategies after each time slot based on new
path loss measurements. The mapping φ from Section III-B is
defined in the natural way: the combined strategy correspond-
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Fig. 3. Total utility realized per 100 slots (normalized to the centralized
solution) for 50 trials with initial path loss of 105 dB for each node.
Parameters used in the shadowing map include a cell radius of 600 m, a
shadowing correlation distance of 100 m, a shadowing standard deviation of
6 dB, and node speed of 4.17 m/s. A constant starting point for each node was
assigned, and the direction of travel for each node was chosen randomly from
the four cardinal directions at the onset and held constant. The discounting
of future payoffs was “reset” after 100 time slots.

TABLE III

AVERAGE TOTAL DISCOUNTED UTILITY PER 100 SLOTS REALIZED VIA

THE VARIOUS POWER CONTROL STRATEGIES (DYNAMIC PATH LOSS). DATA

WERE AVERAGED OVER 50 TRIALS WITH RANDOMIZED INITIAL STATE.

Average total utility (% of buffer per µJ)

Single-agent Game theory Centralized
10.87 17.17 17.09

ing to the path loss pair closest (in an absolute-value sense)
to the most recently observed path loss values is chosen.

The initial path loss for each node was 105 dB and the
system was evolved for 400 time slots. Fig. 3 demonstrates
the total discounted utility relative to the centralized solution
for the various strategies, and Table III shows the average total
discounted utility per 100 slots. In this case, we observe that
although there is an expected reduction in utility for the game-
theoretic and centralized solutions (due to path loss tracking
error), we see that the game-theoretic approach is generally as
effective as (or even at times slightly more effective than) the
centralized strategy. The game-theoretic solution also exhibits
a 58% improvement in total utility over the single-agent case.

V. CONCLUSIONS AND FUTURE WORK

A stochastic game-theoretic approach to calculating transmit
power strategies for nodes in a delay-sensitive CDMA wireless
network was presented. Simulation has shown that in both
static path loss and dynamic shadowing path loss cases, the
game-theoretic equilibria determined compare favorably to tra-
ditional single-agent and centralized optimization techniques
in terms of realized utility and transmit energy expended, albeit



at the cost of increased system and computational complexity.
Future work could entail refinements to the utility function,

perhaps by including pricing terms for transmit power [2].
More importantly, attempts at reducing the complexity of this
general framework would be effort well spent. By simplifying
or coarsening the state space, or by investigating alternative
and approximate equilibrium concepts, this approach may be
profitably applied to richer networks. It is by employing such
approximations that game-theoretic power control solutions
may have their greatest practical impact.
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