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Abstract— We consider a ring topology with limited or full
switching capability as deployed in high bandwidth metro optical
networks and develop a model to estimate the probability
of blocking for interconnecting links. The model is based on
the lower and upper bounds of link blocking probability. We
analyze the performance for a homogeneous traffic case and
present simulation results for representative ring networks. We
demonstrate that the bounds are very tight with an error of less
than 2% when the traffic load is modest. The approach is based
on partitioning the state space into subspaces and weighting the
upper bound of blocking probability in each subspace with the
occurrence of the states. The computational complexity of the
approach is comparable to solving a degree of N polynomial
equation.

I. INTRODUCTION

Optical network elements such as Reconfigurable Opti-
cal Add Drop Multiplexers (ROADMs) and Optical Cross-
Connects (OXC) are becoming integral parts of wavelength
division multiplexing (WDM) networks [1]. Estimating the
blocking probability of interconnecting wavelength links in a
WDM network is important in assessing the Quality of Service
(QoS) from the carriers’ perspective or as perceived by the end
users. This, in particular, is the case when the traffic intensity
is so high that due to call blocking, the discrepancy between
the entire offered load and the carried load is not negligible.
While the exact computation of blocking probability may be
unavailable, bounds may serve as a useful measure for design
and provisioning purposes, especially if the upper and lower
bounds are found to be very tight.

Variants of ring architecture are widely deployed by ser-
vice providers. The mesh architecture may be developed by
extending the existing ring topology to further simplify the
interconnection of these networks at the core. In an optical
network, whether the connection is part of a Traffic Engineered
path or a deterministic path, each request of lightpath setup
will take one wavelength. This is similar to circuit setup in a
public-switched network except that the former is subject to
wavelength continuity and, more generally, optical impairment
constraints.

With development of a control plane or sophisticated man-
agement and provisioning systems, a dynamic set of light-
paths becomes a reality. For example, the Generalized Multi-
Protocol Label Switching (GMPLS) [2], provides a unified
end-to-end control plane for provisioning, protection, and
restoration of heterogeneous data networks, and enables each
node to do traffic engineering based on the advertised resource
availability information.
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Fig. 1. Optically Switched Ring Networks

In this paper, we consider a ring topology with dynamic
optical links interconnecting the network nodes and develop
upper and lower bounds to estimate the probability of link
blocking. Next section describes the system model under
consideration. Section III presents our model, followed by
the derivation of the bounds in section IV and V. Section VI
presents the simulation results and finally concluding remarks
are provided in Section VII.

II. SYSTEM MODEL

As shown in Fig.1, N access nodes are connected to a
unidirectional optically switched ring. A fiber on the ring has
m wavelengths, and each node j has the same incoming traffic
λi. We assume that wavelength conversion is unavailable, the
traffic demand matrix is homogeneous, and traffic only flows
clockwise. Meanwhile, incoming traffic at each access node
is a Poisson process, and the traffic is distributed among all
the wavelengths randomly with equal probability. If a request
cannot be satisfied on the selected wavelength plane, it is
rejected. The service time of each request is assumed to follow
an exponential distribution.

From the above assumptions, we know that the arrival to
each wavelength plane is also a Poisson process. The problem
is simplified to determining a blocking probability on each
wavelength plane given the Poisson arrival rate of incoming
traffic of λi/m at each node.

Blocking probability in various network scenarios have been
addressed in [3]–[6]. The blocking probability in all-optical
networks with and without wavelength changers has been
considered in [3] and has been modeled with the assumption
that the traffic load is light, an initial estimate of link blocking
probability is known, and usage of a wavelength on a hop
is statistically independent of other hops as well as other
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Fig. 2. A ring with three nodes

wavelengths. The estimation of fiber utilization ratio in [3]
neglects the impact on call arrival rate caused by the blocking.
This is reasonable when the link blocking probability is low.
However, with high link blocking probability, the assumption
will result in over-estimating the path blocking probability.
Moreover, by assuming that wavelength seizure and release
are independent of each other, the dynamic nature of the traffic
is hidden.

Reference [4] focuses on the optical network with wave-
length converters. The traffic is assumed to be bounded by
the number of ports in a node, which hides the dynamic
nature of the traffic. Reference [5] provides both analytical
model and simulation results on call blocking probability in
a ring network for very light traffic. This model assumes a
homogeneous traffic matrix, Markovian correlation of blocking
at adjacent links, and certain regular topologies. The compu-
tational complexity is modest.

More recently, a computational model for estimating block-
ing probability in a multi-fiber WDM optical network has
been presented in [6] where the entire wavelength channel
is dedicated to a single connection. Our work deals with
dynamically provisioned networks, where even if a wavelength
is occupied on some segments of a network, it can still be
reused wherever possible, hence considerably reducing the
blocking probability.

With Fiber to the Home (FTTH), the arrival rate at an edge
node will become high and blocking probability may be much
greater than that in the core network. Estimation of blocking
probability in a network with arbitrary traffic intensity is a
hard problem in that the correlation of blocking probability
on different links makes precise computation of carried load
impossible.

We note that link blocking probability is usually the basis to
compute call blocking. This will be the focus of our paper and
is equally applicable to [3] and [5]. It can further be extended
to model waveband switching or fiber switching.

III. STATE TRANSITION DIAGRAM OF A UNIDIRECTIONAL
RING TOPOLOGY

A. A Simple Example

Suppose we have 3 nodes in a unidirectional ring. Each
link has only one wavelength. Fig. 2 shows that both link AB
and BC being busy can be caused by two scenarios, i.e., AB
is occupied by a lightpath from A to B and BC is occupied
by a lightpath from B to C or AB and BC is occupied by a
lightpath from A to C, which means that we should not only

TABLE I
LIST OF LINK STATES

Link Occupied by path Occupied by path Occupied by path
AB 1. Idle 2. From A to B 3. From A to C 4. From C to B
BC 5. Idle 6. From B to C 3. From A to C 7. From B to A
CA 8. Idle 9. From C to A 4. From C to B 7. From B to A
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Fig. 3. State Transition Diagram of a Three-node Ring. Each arrow represents
transition rate of λ/2, and each arrow with dashed line represents transition
rate of µ.

note whether a link is busy, but also note the source-destination
pair which occupies the link.

We can list the states as shown in Table I. Therefore, we
can find 14 different states for a three-node ring. We define
S1 as the scenario that all links are idle. S1 can be described
as S1 = (1, 5, 8), where the three indices in the parentheses
are defined in Table I. Similarly, we define S2 = (1, 5, 9),
S3 = (1, 6, 8), S4 = (1, 6, 9), S5 = (1, 7, 7), S6 = (2, 5, 8),
S7 = (2, 5, 9), S8 = (2, 6, 8), S9 = (2, 6, 9), S10 = (2, 7, 7),
S11 = (3, 3, 8), S12 = (3, 3, 9), S13 = (4, 5, 4) and S14 =
(4, 6, 4).

We assume that the traffic demand matrix is homogeneous,
the incoming traffic at each node is λ, the departure rate of
each lightpath request is µ. The state transition diagram of
Fig. 2 can be depicted as in Fig. 3.

Based on Fig. 3, we can obtain the state transition matrix as
shown in Fig. 4. We can obtain the probability of each state
in the following vector:
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(1)
where D = r3 + 12r2 + 24r + 8, and r = λ/µ.

According to (1), we can easily calculate the probability
that link AB is busy as:

Pb =
14∑

k=6

Sk. (2)

B. Partitioning the state space

A three-node unidirectional ring with homogeneous traffic
demand is the simplest scenario. However, calculating the



Fig. 4. State Transition Matrix in a Three-node Ring

precise link blocking probability is complicated. Generally,
for a ring with N nodes, we need O(NN ) network states,
and since we need to compute the transition rate for any state
to any other state, an O(NN × NN ) matrix results. Even if
N is small, the matrix becomes intractable due to its non-
polynomial complexity. A precise state transition diagram to
obtain the blocking probability is not possible when N is large.

When the traffic demand matrix is homogeneous, the block-
ing probability on each link is also the same. For a ring with
N links denoted as (l1, l2, · · · , lN ), we focus on the blocking
probability on l1.

The basic idea of the proposed algorithm is straightforward.
The arrival rate on l1 is dependent on the current network
states. We assume that there are K network states, and the
flow rate on l1 of state k is Ik. Without loss of generality, we
assume the departure rate of all the states is one per time unit.
We denote pk as the probability that the network is in state k.
The blocking probability of link l1 is:

Pb =
K∑

k=1

Ik

1 + Ik
pk. (3)

When all links are idle, the flow rate on l1 is the maximum.
When link lN is busy, the flow rate on l1 is reduced. If both
lN and l2 are busy, the flow rate on l1 is further reduced. We
denote the network state space as Ω.

The proposed algorithm in this paper simplifies the state
transition diagram by dividing Ω into 3 subspaces as follows:

S0 = Ω− S1 − S2. (4)

S1 = {lN busy and l2 idle}. (5)

S2 = {lN busy and l2 busy}. (6)

We use the maximum flow rate Isk among all the states
skm ∈ Sk as the representative flow rate in Sk, and denote
psk as the probability that the network is in state Sk, and
define PSk

bu = Isk/(1 + Isk). Therefore, we have

2∑

k=0

(PSk
bu psk) > Pb. (7)

Equation (7) cannot be used directly because it is of the
same complexity to calculate the precise psk. Further approx-
imation is required.

IV. LOWER BOUND OF BLOCKING PROBABILITY

Suppose the blocking probability on each link is Pb. We
offer the following approach to compute the lower bound of
blocking probability on a link. In all subsequent analysis,
we assume the traffic matrix is homogeneous with newly
generated traffic intensity of λ at each node. The ring is
unidirectional and traffic flows clockwise.

Theorem 1: In a ring with N nodes, if node A is k hops
away from the head node of link δ, the traffic flow I(k) from
A on the link δ satisfies

I(k) ≥ λ((1− Pb)k − (1− Pb)N−1)
(N − 1)Pb

. (8)

Proof: The prerequisite for a successful lightpath setup
over link δ from node A is that all the links along the path
other than δ to be idle. Only path that is longer than k will
pass traffic through link δ. Because each link is busy with
probability Pb, the probability of successful lightpath setup
from A can be approximated as (1−Pb)m where m+1 is the
number of hops from node A to the destination. The maximal
hop is (N − 1) in that a node will never setup a lightpath to
loop back. The traffic flow β from a node to any other node
is identical, and therefore

β = λ/(N − 1). (9)

Thus, the overall traffic flow from node A on link δ is
approximately

N−2∑

m=k

β(1− Pb)m =
λ((1− Pb)k − (1− Pb)N−1)

(N − 1)Pb
. (10)

When a link is busy, the link after this busy link is likely
to be busy because the traffic flows clockwise. Due to this
dependency on link blockage, the probability that k links are
idle will be greater than (1− Pb)k.

Corollary 1: From Theorem 1, the overall traffic flow Λ on
a link in the ring topology given homogeneous traffic demand
satisfies

Λ =
N−2∑

k=0

I(k) ≥ λ(1− (1− Pb)N−1(1 + Pb(N − 1)))
(N − 1)P 2

b

.

(11)
Theorem 2: We assume the arrival process is Poisson and

the departure process is exponential with mean service time
1/µ . The lower bound of link blocking probability Pb can be
computed by substituting Λ with the lower bound of equation
(11) and by defining ρ = Λ/µ to solve the equation

ρ

1 + ρ
= Pb. (12)

Proof: The blocking probability on a particular link δ
can be approximately computed according to M/M/1/1 as

ρ

1 + ρ
= P

′
b . (13)



Given Pb, P
′
b ≤ Pb because the left side of (13) is a monotonic

increasing function, and we substituted ρ with its lower bound.
However, Pb is also unknown. Because ρ is a monotonic
decreasing function of Pb, (13) is also a monotonic decreasing
function of Pb. Therefore, when P

′
b ≤ Pb, the solution of Pb

to (12) is strictly smaller than the precise value of Pb.
We denote the calculated result from (12) as Pbl.

V. UPPER BOUND OF BLOCKING PROBABILITY

When all links are idle, the flow Is0 on l1 is the maximum.
Theorem 3: In a ring with N nodes,

Is0 = Nλ/2. (14)
Proof: If a node A is k hops away from the head node

of l1, the probability that A imposes traffic flow on l1 will be
the left hand side of (10) with Pb = 0. Therefore, The total
traffic flow on l1 will be

N−2∑

k=0

N−2∑

m=k

λ

N − 1
=

Nλ

2
. (15)

The upper bound of link probability can never exceed

PU
b =

Nλ/2
1 + Nλ/2

= PS0
bu . (16)

Equation (16) gives the simplest approach to calculate the
upper bound of link blocking probability. However, we can
find tighter upper bound by the following steps.

A. Lower Bound of pS2

According to (6), ps2=P{lN busy and l2 busy}. Therefore
ps2 ≥ P{lN busy}P{l2 busy} = P 2

b ≥ P 2
bl. The lower bound

of pS2 can be calculated as pl
S2 = P 2

bl.

B. Lower Bound of P (S1 ∪ S2)

We know that S1 ∪ S2 = {lN busy} and S1 ∩ S2 = Φ.
Therefore, PS1+PS2 = Pb ≥ Pbl. The lower bound of P (S1∪
S2) is Pbl.

C. Upper Bound of Link Blocking Probability

In S2, the flow rate on l1 cannot exceed λ/(N −1). This is
because only the traffic flow from the head node of l1 to the
tail node of l1 can be accepted. Therefore, we have

PS2
bu =

λ/(N − 1)
1 + λ/(N − 1)

. (17)

In S1, the flow rate on l1 cannot exceed λ. Therefore, we
have

PS1
bu =

λ

1 + λ
. (18)

Because pS0 + pS1 + pS2 = 1, we have

pS0 ≤ 1− Pbl. (19)

Theorem 4: The upper bound of link blocking probability
Pbu can be calculated as below:

Pbu = (1− Pbl)PS0
bu + (Pbl − P 2

bl)P
S1
bu + P 2

blP
S2
bu . (20)

TABLE II
CACULATED BOUNDS IN A SIX-NODE RING

λ 0.001 0.0025 0.005 0.0075 0.01
Pbl 0.002967 0.007301 0.01423 0.02084 0.02714
Pbu 0.002985 0.007408 0.01464 0.02171 0.02861
P S0

bu 0.002991 0.007444 0.01478 0.02200 0.02913

TABLE III
CACULATED VERSUS SIMULATED BOUNDS IN A THREE-NODE RING

λ 0.1 0.2 0.3 0.4 0.5 0.6
Pbl 0.1212 0.2056 0.2696 0.3206 0.3625 0.3980
Pbc 0.1237 0.2113 0.2776 0.3301 0.3730 0.4090
Pbu 0.1250 0.2144 0.2816 0.3341 0.3765 0.4116

Proof: S0, S1, and S2 is a partition of the set of all
network states. Therefore, from (3), we have

Pb <
∑

k∈S0

pkPS0
bu +

∑

k∈S1

pkPS1
bu +

∑

k∈S2

pkPS2
bu =

2∑

k=0

pskPSk
bu .

(21)
From (19) and PS0

bu > PS1
bu , we have

2∑

k=0

pskPSk
bu < (1−Pbl)PS0

bu +(Pbl−pS2)PS1
bu +pS2P

S2
bu . (22)

Because pS2 ≥ P 2
bl, we have

Pb < (1−Pbl)PS0
bu + (Pbl−P 2

bl)P
S1
bu + P 2

blP
S2
bu = Pbu, (23)

where Pbl can be calculated according to (12).

VI. SIMULATION VERSUS CALCULATION RESULTS

In our simulation, we assume that we are dealing with a
unidirectional WDM network with 10 wavelengths in a fiber
as shown in Fig. 1. The arrival of incoming call to each node is
a Poisson process at a rate of 10λ per second. The distribution
of the service rate is exponential with the mean of one per
second. The traffic demand matrix is homogeneous.

This model is to calculate the upper bound and lower bound
of blocking probability when the discrepancy between carried
load and offered load is not negligible. When the traffic load is
light, PS0

bu can sever as a good upper bound. Table II provides
the comparison of calculated lower bound Pbl, calculated
upper bound Pbu and calculated PS0

bu in a six-node ring.

TABLE IV
CACULATED VERSUS SIMULATED BOUNDS IN A FOUR-NODE RING

λ 0.1 0.2 0.3 0.4 0.5 0.6
Pbl 0.1412 0.2249 0.2841 0.3297 0.3665 0.3973
Pbs 0.1543 0.2483 0.3108 0.3604 0.4001 0.4335
Pbu 0.1548 0.2537 0.3227 0.3738 0.4133 0.4448

TABLE V
CACULATED VERSUS SIMULATED BOUNDS IN A FIVE-NODE RING

λ 0.1 0.2 0.3 0.4 0.5 0.6
Pbl 0.1537 0.2336 0.2879 0.3289 0.3619 0.3894
Pbs 0.1806 0.2785 0.3412 0.3895 0.4255 0.4517
Pbu 0.1817 0.2879 0.3583 0.4084 0.4460 0.4753



TABLE VI
CACULATED VERSUS SIMULATED BOUNDS IN A SIX-NODE RING

λ 0.1 0.2 0.3 0.4 0.5 0.6
Pbl 0.1614 0.2367 0.2867 0.3243 0.3543 0.3794
Pbs 0.2002 0.3001 0.3599 0.4072 0.4420 0.4653
Pbu 0.2063 0.3185 0.3897 0.4390 0.4751 0.5027

TABLE VII
ERROR AS THE NUMBER OF NODES AND TRAFFIC INTENSITY INCREASE

Number of Nodes 4 5 6
% Error of Pbl when λ = 0.1 8.49 14.89 19.38
% Error of Pbl when λ = 0.2 9.42 16.12 21.13
% Error of Pbu when λ = 0.1 0.32 0.61 3.05
% Error of Pbu when λ = 0.2 2.17 3.38 6.13

Table III provides the comparison of calculated lower
bounds Pbl, upper bounds Pbu and the actual blocking prob-
ability Pbc when λ is increased from 0.1 to 0.6 at a step of
0.1.

Table IV to Table VI provides the comparison of calculated
lower bounds Pbl, upper bounds Pbu, and the blocking prob-
ability Pbs from simulation when λ is increased from 0.1 to
0.6 at a step of 0.1.

From the simulation, we can observe that the calculated
upper bound is very tight. When the traffic intensity is modest,
the error is less than 2%.

From Table VII, we can observe that the error increases
along with the node number and traffic intensity.

VII. CONCLUSION

This paper presents a novel and efficient approach to
calculate the lower and upper bounds of interconnecting link
blocking probability in optically switched Ring networks de-
ploying optical network elements like ROADMs. The approach
considers the impact of blocking on flow rate on a link by
dividing the network state space into three subspaces. This
novel approach has the potential to be applied to heteroge-
neous traffic demand matrix in ring or mesh networks. The
efficiency of the approach provides the network designers a
useful tool to control the QoS or adjust the traffic flow in
their networks

REFERENCES

[1] R. Ramaswami and K. Sivarajan, Optical Networks: A Practical Perspec-
tive, 2nd ed., ser. Networking. Morgan Kaufmann, 2002.

[2] E. Mannie and Ed., “Generalized multi-protocol label switching (GMPLS)
architecture,” RFC3945.

[3] R. A. Barry and P. A. Humblet, “Models of blocking probability in all-
optical networks with and without wavelength changers,” IEEE Journal
on Selected Areas in Communications, vol. 14, no. 5, pp. 858–867, June
1996.

[4] L. wei Chen and E. Modiano, “Efficient routing and wavelength assign-
ment for reconfigurable wdm ring networks with wavelength converters,”
IEEE/ACM Transactions on Networking, vol. 13, no. 1, pp. 173–186, Feb.
2005.

[5] S. Subramaniam, M. Azizogelu, and A. K. Somani, “All-optical networks
with sparse wavelength conversion,” IEEE/ACM Transactions on Net-
working, vol. 4, no. 4, pp. 544–557, Aug. 1996.

[6] Y. Luo and N. Ansari, “A computational model for estimating blocking
probabilities of multifiber wdm optical networks,” IEEE Communications
Letters, vol. 8, no. 1, pp. 60–62, Jan. 2004.


