
Lemke and Howson Algorithm

Kunpeng Liu

February 3, 2013

1 Introduction

The Lemke-Howson algorithm is an effective method to find at least one Nash Equilibrium
(NE) for a two-person bimatrix game. Here the conception of NE is extent to include
not only pure NE but also mixed NE. The algorithm was first introduced in [1], and
was interpreted geometrically in [2], which visualize the process of finding NE when both
players’ strategy sizes are small enough. The explanation here is based on the work in [2],
and we also add certain our own understandings to make the statement even clearer.

2 The Lemke-Howson Algorithm

Consider a two-player game with payoff matrix as Ui, i ∈ {1, 2} for player 1 and 2, respec-
tively. We assume that all the elements in Ui, ∀i ∈ {1, 2} are positive. The assumption
is without loss of generality, since adding the same large number for every elements in
Ui, i ∈ {1, 2} clearly does not change the characteristic of the game, and one NE of the
original game will still be a NE of the adjusted game.

Suppose player 1 has m strategies available, denoted as S1 = {s1, ..., sm}, while play 2
has n strategies available, denoted as S2 = {sm+1, ..., sm+n}. Therefore, A and B are both
m×n matrix. Call a vector is a probability vector if it represents a probability distribution,
i.e., all the elements are non-negative and the sum is 1.

Use pi to represent the probability for player 1 to choose strategy si for i ∈ {1, ...,m},
while use qj to represent the probability for player 2 to choose strategy sj for j ∈ {m +
1, ...,m+n}. For a pair of probability vector (p, q), p = {p1, ..., pm}T and q = {qm+1, ..., qm+n}T ,
it is a Nash Equilibrium (NE) if and only if for player 1 either pi = 0, or pi > 0 and si is
the best reply to q, while for player 2 either qj = 0, or qj > 0 and sj is the best reply to p.
Suppose (p, q) is a NE, then:

U1 · q + r = v1 · 1
UT
2 · p + t = v2 · 1

(1)

1



where r = {r1, ..., rm}T , t = {tm+1, ..., tm+n}T and r > 0, t > 0, while 1 indicates a column
vector of 1’s of appropriate dimension and vi, i ∈ {1, 2} is a scalar representing player i’s
payoff.

In (1), r satisfy the condition that ri 6= 0 when and only when pi = 0 for all i ∈ {1, ..,m}
and t satisfy the condition that ti 6= 0 when and only when qi = 0 for all i ∈ {m+1, ..,m+n}.

From (1), it is easy to get:

U1 · q′ + r′ = 1

UT
2 · p′ + t′ = 1

(2)

where q′ = q/v1, r
′ = r/v1, p

′ = p/v2 and t′ = t/v2.
Define the calculation of normalization for vectors as follows:

normal(x) = x/
∑
i

xi

Then, normal(p′) = p′/
∑

i p
′
i = v1 · p′ = p. The same operation also stands for q′,

which brings that:

p = normal(p′)

q = normal(q′)
(3)

Therefore, it is easy to get p and q as long as we can find p′ and q′.
For (2), one obvious solution is p′ = 0, q′ = 0, r′ = 1 and t′ = 1. This solution, called

extraneous solution, is a by-product of (2) and apparently does not fit our original problem.
However, the extraneous solution can be used to find a practical solution, and the process
will be explained in detail later.

To find p′ and q′, let us rewrite (2) as follows:

[UT
2 I]

(
p′

t′

)
= 1 (4)

[I U1]

(
r′

q′

)
= 1 (5)

Again, in (4) and (5), r′ satisfy the condition that r′i 6= 0 when and only when p′i = 0
for all i ∈ {1, ..,m} and s′ satisfy the condition that s′i 6= 0 when and only when q′i = 0 for
all i ∈ {m + 1, ..,m + n}, and these conditions can be formalized as:

p′i · r′i = 0, ∀i ∈ {1,m}
p′i + r′i > 0, ∀i ∈ {1,m}
q′j · t′j = 0, ∀j ∈ {m + 1,m + n}

q′j + t′j > 0, ∀j ∈ {m + 1,m + n}

(6)

2



where, it is worth noting that the indexes of p and r are in the same range, and so are
those of q and s.

(4) and (5) both contain m + n variables, but (4) only has n equations while (5) only
has m equations. In order to solve (4) and (5), it is necessary to eliminate m variables
in (4) and n variables in (5). From (6), it is obvious that m + n variables among the
total 2m + 2n variables have to be 0. Therefore, we need to pick m variables in (4) to be
zero, and pick n variables in (5) to be zero. If we know which m variables in (4) are 0
and which n variables in (5) are 0, we can calculate the nonzero variables for (4) and (5)
separately in the condition that the left equations constitute a non-singular matrix. Since
the existence of NE is guaranteed by Nash’s Theorem, the problem left for us is how to
figure out which m variables in (4) and which n variables in (5)should be zero. From this
aspect, the Lemke-Howson algorithm is an algorithm to find one NE through changing the
zero settings little by little until the practical NE emerges.

The concept of label can be used to make the next analysis more clear. The labels for
(4) and (5) are denoted as L(P ) and L(Q), respectively, which are defined as follows:

L(P ) = {i : p′i = 0, i ∈ {1, ...,m}}
⋃
{j : t′j = 0, j ∈ {1 = m + 1, ...,m + n}} (7)

L(Q) = {i : r′i = 0, i ∈ {1, ...,m}}
⋃
{j : q′j = 0, j ∈ {1 = m + 1, ...,m + n}} (8)

If L(P )
⋃
L(Q) = {1, 2, ...,m+n}, we will say that the pair of actions (p′, q′) is completed

labeled. Apparently, the extraneous solution is completed labeled. When a completed
labeled pair, other than extraneous solution, is found and the left two matrices are non-
singular, we claim that the problem is solved. To solve the problem by enumeration, we
need to first choose a start point, and the start point is completed labeled while the left
matrices for the start point are non-singular. Then, for each step, we change the labels
for L(P ) and L(Q) in turns and guarantee that the left matrices are still non-singular, in
other words, can be diagonalized, after the changes. If we get another completed labeled
pairs, we find one pair of solutions for (4) and (5). In the process, the enumeration step is
called pivoting.

To explain the pivoting, let us consider the following Table 1.

M 1 2 3 4 =

1 a1 0 c1 d1 e1
2 0 b2 c2 d2 e2

Table 1: A sample table M

Apparently, L(M) = {3, 4} and the left matrix is non-singular. Next, we want to
pivot matrix M on the element of (1, 3), which is c1. By multiplying c2/c1 for row 1 and
subtracting the result from row 2 for matrix M , we can get Table 2.

3



M ′ 1 2 3 4 =

3 a1 0 c1 d1 e1
2 − c2

c1
a1 b2 0 d2 − c2

c1
d1 e2 − c2

c1
e1

Table 2: A sample table M ′

Now, L(M ′) = {1, 4}. Through pivoting matrix M on (1, 3), we remove label 3, and
add label 1. One requirement for pivoting is that every left matrix in each step should lead
to a practical solution, which must be positive. In Table 2, this requires that c1 > 0 and
c1/e1 > c2/e2, which could lead that e2 − (c2/c1)e1 > 0.

The pivoting procedure can be summarized as follows:
In Algorithm 1, cl represent the complementary of the label, which is used to track the

variables that can be calculated inside the matrix if the labeled variable are set to zero.
After understanding the algorithm for pivoting, the Lemke-Howson algorithm can be

implemented as follows:
In Algorithm 2, the implementation of method CalculateWithLabel, which returns the

value of p and q basing on the label status, is straightforward and ignored.

4



Data: pivot(M, k0, cl)
Result: M, k, cl
(m,n)=size(M);
k=k0;
max=0;
for i← 1 to m do

t = Mi,k0/Mi,n;
if t > max then

ind=i;
end

end
if max > 0 then

swap(k, cl(ind));
for i← 1 to m do

if i=ind then
continue;

end
for j ← 1 to n do

Mi,j = Mi,j − (Mi,k0/Mind,k0)Mk,j ;
end

end

end
return M, k;

Algorithm 1: Pivot matrix M for label k0

5



Data: LemkeHowson(U1, U2)
Result: p, q
(m,n)=size(U1);
P = [UT

2 , I, 1];
Q = [I, U1,1];
LP=[1,...,m];
LQ=[m+1,...,m+n];
k=k0;
while 1 do

Remove(LP,k);
[P, k]=Pivot(P, k);
Add(LP,k);
if k=k0 then

break;
end
Remove(LQ,k);
[Q, k]=Pivot(Q, k);
Add(LQ,k);
if k=k0 then

break;
end

end
[p,q]=CalculateWithLabel(P,Q,LP,LQ);
return normal(p), normal(q);

Algorithm 2: The Lemke-Howson algorithm

6



3 An Example

As an example, let us consider the bimatrix game (U1, U2) where U1 =

 4 12 8 6
16 8 12 8
10 8 10 9


and U2 =

 25 5 5 8
1 15 8 4
17 10 10 9

. Hence, we get matrix P and Q as in Table 3. Let us first

pivot matrix P on label 1 as a start point. Please note that after each pivoting step, we
artificially multiply one constant for the corresponding row to make all the elements shown
as integer, which will not affect anything but merely for neat display purpose.

P p1 p2 p3 t4 t5 t6 t7 =

4 25 1 17 1 0 0 0 1
5 5 15 10 0 1 0 0 1
6 5 8 13 0 0 1 0 1
7 8 4 9 0 0 0 1 1

L(P)={1, 2, 3}

Q r1 r2 r3 q4 q5 q6 q7 =

1 1 0 0 4 12 8 6 1

2 0 1 0 16 8 12 8 1
3 0 0 1 10 8 10 9 1

L(Q)={4, 5, 6, 7}

Table 3: The initial matrix P and Q

The pivoting for matrix P brings Label 4, then we proceed the pivoting for matrix Q
on Label 4, which brings Label 2. These procedures bring us Table 4.

P p1 p2 p3 t4 t5 t6 t7 =

1 25 1 17 1 0 0 0 1

5 0 74 33 −1 5 0 0 4
6 0 39 48 −1 0 5 0 4
7 0 92 89 −8 0 0 25 17

L(P)={2, 3, 4}

Q r1 r2 r3 q4 q5 q6 q7 =

1 4 −1 0 0 40 20 16 3
4 0 1 0 16 8 12 8 1
3 0 −5 8 9 24 20 32 3

L(Q)={2, 5, 6, 7}

Table 4: Matrix P and Q after the first round of pivoting

For matrix P in Table 4, due to the duplication of Label 2, we need to pivot matrix
P on Label 2, which would bring us Label 5. Then, we pivot matrix Q on Label 5, which
brings us Label 1. This round of pivoting generate Table 5.

After this round of pivoting, we get a completed label, which means a NE has been
found. From Table 5, it is obvious that: p′ = [0.0378, 0.0541, 0]T and q′ = [0.025, 0.075, 0, 0]T .
Therefore, p = normal(p′) = [0.4118, 0.5882, 0]T and q = normal(q′) = q′ = [0.25, 0.75, 0, 0]T .

7



P p1 p2 p3 t4 t5 t6 t7 =

1 370 0 245 15 −1 0 0 14
2 0 74 33 −1 5 0 0 4
6 0 0 453 −7 −39 74 0 28
7 0 0 3550 −500 −460 0 1850 890

L(P)={3, 4, 5}

Q r1 r2 r3 q4 q5 q6 q7 =

5 4 −1 0 0 40 20 16 3
4 −32 48 0 640 0 320 192 16
3 −6 −11 20 0 0 20 56 3

L(Q)={1, 2, 6, 7}

Table 5: Matrix P and Q after the second round of pivoting

4 Some Extension

In Sect. 2, we assume that matrix U1 and U2 are utility matrices. However, the Lemke-
Howson algorithm can also be used when U1 and U2 are cost matrices after certain simple
adjustments. In this section, we shows how to use the Lemke-Howson algorithm to find
one NE when the given matrices are cost matrices.

Following the same methodology of (1) in Sect. 2, it is easy to get (9) when U1 and U2

are cost matrices.

U1 · q − r = v1 · 1
UT
2 · p− t = v2 · 1

(9)

Let us use M to indicate a matrix, whose dimension decided by the context, and every
elements in M is a relative large number M . Then (M− U1) · q + r = M · 1− U1 · q + r =
(M − v1)1. In the same way, (M − UT

2 ) · p + t = (M − v2)1. Suppose U ′
1 = M − U1,

U ′
2 = M− U2, v

′
1 = M − v1 and v′2 = M − v2, then we can get (10).

U ′
1 · q + r = v′1 · 1

U ′T
2 · p + t = v′2 · 1

(10)

Apparently, as long as M is large enough, (10) can be solved with the Lemke-Howson
algorithm, and the action pair (p, q) is also the action pair for U1 and U2.

References

[1] C. Lemke and J. Howson Jr, “Equilibrium points of bimatrix games,” Journal of the
Society for Industrial & Applied Mathematics, vol. 12, no. 2, pp. 413–423, 1964.

[2] L. S. Shapley, “A note on the Lemke-Howson algorithm,” in Pivoting and Extension, ser.
Mathematical Programming Studies. Springer Berlin Heidelberg, 1974, vol. 1, pp. 175–
189, 10.1007/BFb0121248. [Online]. Available: http://dx.doi.org/10.1007/BFb0121248

8


